Citation: B. Palakshi Reddy, P. Iniyavan, S. Sarveswari, V. Vijayakumar. Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction[J]. Chinese Chemical Letters, ;2014, 25(12): 1595-1600. doi: 10.1016/j.cclet.2014.06.026
-
Reusable acidic nickel oxide nanoparticles have been synthesized, characterized and applied as a catalyst to convert 2-aminoaryl ketones and β-ketoesters/ketones into the corresponding quinolines in good yields with high selectivity. This could serve as a simple and convenient procedure for the Friedlander annulations.
-
Keywords:
- o-Aminoaryl ketones,
- NiO NPs,
- Friedlander annulation,
- Quinolines
-
-
[1]
[1] R.D. Larsen, E.G. Corley, A. King, et al., Practical route to a new class of LTD4 receptor antagonists, J. Org. Chem. 61 (1996) 3398-3405.
-
[2]
[2] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C.J. Tzeng, Synthesis and antibacterial evaluation of certain quinolone derivatives, Med. Chem. 44 (2001) 2374-2377.
-
[3]
[3] D. Doubé, M. Blouin, C. Brideau, et al., Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530, Bioorg. Med. Chem. Lett. 8 (1998) 1255-1260.
-
[4]
[4] M.P. Maguire, K.R. Sheets, K. McVety, A.P. Spada, A. Zilberstein, A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives, J. Med. Chem. 37 (1994) 2129-2137.
-
[5]
[5] S. Asghari, S. Ramezani, M. Mohseni, Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate, Chin. Chem. Lett. 25 (2014) 431-434.
-
[6]
[6] M.B. Kanani, M.P. Patel, Synthesis of N-arylquinolone derivatives bearing 2-thiophenoxy quinolines and their antimicrobial evaluation, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.04.002.
-
[7]
[7] S.E. Denmark, S. Venkatraman, On the mechanism of the Skraup-Doebner-Von miller quinoline synthesis, J. Org. Chem. 71 (2006) 1668-1676.
-
[8]
[8] E.A. Fehnel, Friedländer syntheses with o-aminoaryl ketones. I. Acid-catalyzed condensations of o-aminobenzophenone with ketones, J. Org. Chem. 31 (1966) 2899-2902.
-
[9]
[9] R.P. Thummel, The application of Friedländer and Fischer methodologies to the synthesis of organized polyaza cavities, Syn. Lett. (1992) 1-12.
-
[10]
[10] S. Glaldiali, G. Chelucci, M.S. Mudadu, M.A. Gastaut, R.P. Thummel, Friedländer synthesis of chiral alkyl-substituted 1,10-phenanthrolines, J. Org. Chem. 66 (2001) 400-405.
-
[11]
[11] L. Strekowski, A. Czarny, The Friedländer synthesis of 4-perfluoroalkylquinolines, J. Fluorine Chem. 104 (2000) 281-284.
-
[12]
[12] G.W. Wang, C.S. Jia, Efficient solvent-free synthesis of quinolines promoted by BiCl3, Lett. Org. Chem. 3 (2006) 289-291.
-
[13]
[13] J. Wu, H.G. Xia, K. Gao, Molecular iodine: a highly efficient catalyst in the synthesis of quinolines via Friedländer annulation, Org. Biomol. Chem. 4 (2006) 126-129.
-
[14]
[14] J.S. Yadav, B.V.S. Reddy, V. Sunitha, K. Srinivasa Reddy, K.V.S. Ramakrishna, Montmorillonite KSF-catalyzed one-pot synthesis of hexahydro-1H-pyrrolo[3,-c]quinoline derivatives, Tetrahedron Lett. 45 (2004) 7947-7950.
-
[15]
[15] S.S. Palimkar, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Ionic liquidpromoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines, J. Org. Chem. 68 (2003) 9371-9378.
-
[16]
[16] J.S. Yadav, B.V.S. Reddy, K. Premalatha, Bi(OTf)3-catalyzed Friedländer heteroannulation: a rapid synthesis of 2,3,4-trisubstituted quinolines, Syn. Lett. (2004) 963-966.
-
[17]
[17] S.K. De, R.A. Gibbs, A mild and efficient one-step synthesis of quinolines, Tetrahedron Lett. 46 (2005) 1647-1649.
-
[18]
[18] J.S. Yadav, B.V.S. Reddy, P. Sreedhar, R. Srinivasa Rao, K. Nagaiah, Silver phosphotungstate: a novel and recyclable heteropoly acid for Friedländer quinoline synthesis, Synthesis (2004) 2381-2385.
-
[19]
[19] J.S. Yadav, P. Purushottama Rao, D. Sreenu, et al., Sulfamic acid: an efficient, costeffective and recyclable solid acid catalyst for the Friedlander quinoline synthesis, Tetrahedron Lett. 46 (2005) 7249-7253.
-
[20]
[20] R. Varala, R. Enugala, S.R. Adapa, Efficient and rapid Friedlander synthesis of functionalized quinolines catalyzed by neodymium(iii) nitrate hexahydrate, Synthesis (2006) 3825-3830.
-
[21]
[21] S. Ghassamipour, A.R. Sardarian, Friedländer synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions, Tetrahedron Lett. 50 (2009) 514-519.
-
[22]
[22] B. Jiang, J. Dong, Y. Jin, X.L. Du, M. Xu, The first proline-catalyzed Friedlander annulation: regioselective synthesis of 2-substituted quinoline derivatives, Eur. J. Org. Chem. (2008) 2693-2696.
-
[23]
[23] B. Das, M. Krishnaiah, K. Laxminarayana, D. Nandankumar, Silica supported phosphomolybdic acid: an efficient heterogeneous catalyst for Friedlander synthesis of quinolines, Chem. Pharm. Bull. 56 (2008) 1049-1051.
-
[24]
[24] D. Yang, K. Jiang, J. Li, F. Xu, Synthesis and characterization of quinoline derivatives via the Friedländer reaction, Tetrahedron 63 (2007) 7654.
-
[25]
[25] S. Sarveswari, V. Vijayakumar, An efficient microwave assisted eco-friendly synthesis of 6-chloro-3-(3-arylacryl oyl)-2-methyl-4-phenylquinolines and their conversion to 6-chloro-3-(1-phenyl-5-aryl-4,5-dihydro-1H-pyrazol-3-yl)-2-methyl-4-phenylquinolines, J. Chin. Chem. Soc. 59 (2012) 66-71.
-
[26]
[26] W.S. Loh, H.K. Fun, S.V. Sarveswari, B.P. Vijayakumar, Reddy, 1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(3-methoxyphenyl)prop-2-en-1-one, Acta Crystallogr. E66 (2010) o91-o92.
-
[27]
[27] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 6-Chloro-3-[5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenylquinoline, Acta Crystallogr. E66 (2010) o304.
-
[28]
[28] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, (E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)-3-(2-methoxyphenyl)prop-2-en-1-one, Acta Crystallogr. E66 (2010) o353-o354.
-
[29]
[29] T. Shahani, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 3-Acetyl-6-chloro-2-methyl-4-phenylquinolinium perchlorate, Acta Crystallogr. E66 (2010) o1192-o1193.
-
[30]
[30] S. Natarajan, P. Indumathi, B.P. Reddy, V. Vijayakumar, P.L.N. Lakshman, Ethyl 2-methyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-hexahydro quinoline-3-carboxylate, Acta Crystallogr. E66 (2010) o2240.
-
[31]
[31] K. Rajesh, B.P. Reddy, V. Vijayakumar, Synthesis and biological evaluation of 4-(4-(di-(1H-indol-3-yl)methyl)phenoxy)-2-chloroquinolines, Indian J. Heterocycl. Chem. 19 (2009) 95-96.
-
[32]
[32] S. Sarveswari, V. Vijayakumar, A rapid microwave assisted synthesis of 1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(aryl)prop-2-en-1-ones and its anti bacterial and anti fungal evaluation, Arabian J. Chem. (2011), http://dx.doi.org/10.1016/j.arabjc.2011.01.032 (in press).
-
[33]
[33] S. Sarveswari, V. Vijayakumar, Synthesis and characterization of new 3-(4 5-dihydro-5-aryl)isoxazol-3-yl)-4-hydroxyl quinolin-2(1H)-ones and 3-(4-styryl)isoxazolo[4,5-c]quinolin-4(5H)-one derivatives, Arabian J. Chem. (2011), http:// dx.doi.org/10.1016/j.arabjc.2011.09.020 (in press).
-
[1]
-
-
[1]
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
-
[2]
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
-
[3]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
-
[4]
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
-
[5]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[6]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[7]
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
-
[8]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[9]
Wenya Jiang , Jianyu Wei , Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371
-
[10]
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
-
[11]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[12]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[13]
Ze-Yuan Ma , Mei Xiao , Cheng-Kun Li , Adedamola Shoberu , Jian-Ping Zou . S-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076
-
[14]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[15]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[16]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
-
[17]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[19]
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
-
[20]
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(606)
- HTML views(14)