Citation: B. Palakshi Reddy, P. Iniyavan, S. Sarveswari, V. Vijayakumar. Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction[J]. Chinese Chemical Letters, ;2014, 25(12): 1595-1600. doi: 10.1016/j.cclet.2014.06.026 shu

Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction

  • Corresponding author: V. Vijayakumar, 
  • Received Date: 26 April 2014
    Available Online: 29 May 2014

  • Reusable acidic nickel oxide nanoparticles have been synthesized, characterized and applied as a catalyst to convert 2-aminoaryl ketones and β-ketoesters/ketones into the corresponding quinolines in good yields with high selectivity. This could serve as a simple and convenient procedure for the Friedlander annulations.
  • 加载中
    1. [1]

      [1] R.D. Larsen, E.G. Corley, A. King, et al., Practical route to a new class of LTD4 receptor antagonists, J. Org. Chem. 61 (1996) 3398-3405.

    2. [2]

      [2] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C.J. Tzeng, Synthesis and antibacterial evaluation of certain quinolone derivatives, Med. Chem. 44 (2001) 2374-2377.

    3. [3]

      [3] D. Doubé, M. Blouin, C. Brideau, et al., Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530, Bioorg. Med. Chem. Lett. 8 (1998) 1255-1260.

    4. [4]

      [4] M.P. Maguire, K.R. Sheets, K. McVety, A.P. Spada, A. Zilberstein, A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives, J. Med. Chem. 37 (1994) 2129-2137.

    5. [5]

      [5] S. Asghari, S. Ramezani, M. Mohseni, Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate, Chin. Chem. Lett. 25 (2014) 431-434.

    6. [6]

      [6] M.B. Kanani, M.P. Patel, Synthesis of N-arylquinolone derivatives bearing 2-thiophenoxy quinolines and their antimicrobial evaluation, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.04.002.

    7. [7]

      [7] S.E. Denmark, S. Venkatraman, On the mechanism of the Skraup-Doebner-Von miller quinoline synthesis, J. Org. Chem. 71 (2006) 1668-1676.

    8. [8]

      [8] E.A. Fehnel, Friedländer syntheses with o-aminoaryl ketones. I. Acid-catalyzed condensations of o-aminobenzophenone with ketones, J. Org. Chem. 31 (1966) 2899-2902.

    9. [9]

      [9] R.P. Thummel, The application of Friedländer and Fischer methodologies to the synthesis of organized polyaza cavities, Syn. Lett. (1992) 1-12.

    10. [10]

      [10] S. Glaldiali, G. Chelucci, M.S. Mudadu, M.A. Gastaut, R.P. Thummel, Friedländer synthesis of chiral alkyl-substituted 1,10-phenanthrolines, J. Org. Chem. 66 (2001) 400-405.

    11. [11]

      [11] L. Strekowski, A. Czarny, The Friedländer synthesis of 4-perfluoroalkylquinolines, J. Fluorine Chem. 104 (2000) 281-284.

    12. [12]

      [12] G.W. Wang, C.S. Jia, Efficient solvent-free synthesis of quinolines promoted by BiCl3, Lett. Org. Chem. 3 (2006) 289-291.

    13. [13]

      [13] J. Wu, H.G. Xia, K. Gao, Molecular iodine: a highly efficient catalyst in the synthesis of quinolines via Friedländer annulation, Org. Biomol. Chem. 4 (2006) 126-129.

    14. [14]

      [14] J.S. Yadav, B.V.S. Reddy, V. Sunitha, K. Srinivasa Reddy, K.V.S. Ramakrishna, Montmorillonite KSF-catalyzed one-pot synthesis of hexahydro-1H-pyrrolo[3,-c]quinoline derivatives, Tetrahedron Lett. 45 (2004) 7947-7950.

    15. [15]

      [15] S.S. Palimkar, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Ionic liquidpromoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines, J. Org. Chem. 68 (2003) 9371-9378.

    16. [16]

      [16] J.S. Yadav, B.V.S. Reddy, K. Premalatha, Bi(OTf)3-catalyzed Friedländer heteroannulation: a rapid synthesis of 2,3,4-trisubstituted quinolines, Syn. Lett. (2004) 963-966.

    17. [17]

      [17] S.K. De, R.A. Gibbs, A mild and efficient one-step synthesis of quinolines, Tetrahedron Lett. 46 (2005) 1647-1649.

    18. [18]

      [18] J.S. Yadav, B.V.S. Reddy, P. Sreedhar, R. Srinivasa Rao, K. Nagaiah, Silver phosphotungstate: a novel and recyclable heteropoly acid for Friedländer quinoline synthesis, Synthesis (2004) 2381-2385.

    19. [19]

      [19] J.S. Yadav, P. Purushottama Rao, D. Sreenu, et al., Sulfamic acid: an efficient, costeffective and recyclable solid acid catalyst for the Friedlander quinoline synthesis, Tetrahedron Lett. 46 (2005) 7249-7253.

    20. [20]

      [20] R. Varala, R. Enugala, S.R. Adapa, Efficient and rapid Friedlander synthesis of functionalized quinolines catalyzed by neodymium(iii) nitrate hexahydrate, Synthesis (2006) 3825-3830.

    21. [21]

      [21] S. Ghassamipour, A.R. Sardarian, Friedländer synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions, Tetrahedron Lett. 50 (2009) 514-519.

    22. [22]

      [22] B. Jiang, J. Dong, Y. Jin, X.L. Du, M. Xu, The first proline-catalyzed Friedlander annulation: regioselective synthesis of 2-substituted quinoline derivatives, Eur. J. Org. Chem. (2008) 2693-2696.

    23. [23]

      [23] B. Das, M. Krishnaiah, K. Laxminarayana, D. Nandankumar, Silica supported phosphomolybdic acid: an efficient heterogeneous catalyst for Friedlander synthesis of quinolines, Chem. Pharm. Bull. 56 (2008) 1049-1051.

    24. [24]

      [24] D. Yang, K. Jiang, J. Li, F. Xu, Synthesis and characterization of quinoline derivatives via the Friedländer reaction, Tetrahedron 63 (2007) 7654.

    25. [25]

      [25] S. Sarveswari, V. Vijayakumar, An efficient microwave assisted eco-friendly synthesis of 6-chloro-3-(3-arylacryl oyl)-2-methyl-4-phenylquinolines and their conversion to 6-chloro-3-(1-phenyl-5-aryl-4,5-dihydro-1H-pyrazol-3-yl)-2-methyl-4-phenylquinolines, J. Chin. Chem. Soc. 59 (2012) 66-71.

    26. [26]

      [26] W.S. Loh, H.K. Fun, S.V. Sarveswari, B.P. Vijayakumar, Reddy, 1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(3-methoxyphenyl)prop-2-en-1-one, Acta Crystallogr. E66 (2010) o91-o92.

    27. [27]

      [27] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 6-Chloro-3-[5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenylquinoline, Acta Crystallogr. E66 (2010) o304.

    28. [28]

      [28] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, (E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)-3-(2-methoxyphenyl)prop-2-en-1-one, Acta Crystallogr. E66 (2010) o353-o354.

    29. [29]

      [29] T. Shahani, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 3-Acetyl-6-chloro-2-methyl-4-phenylquinolinium perchlorate, Acta Crystallogr. E66 (2010) o1192-o1193.

    30. [30]

      [30] S. Natarajan, P. Indumathi, B.P. Reddy, V. Vijayakumar, P.L.N. Lakshman, Ethyl 2-methyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-hexahydro quinoline-3-carboxylate, Acta Crystallogr. E66 (2010) o2240.

    31. [31]

      [31] K. Rajesh, B.P. Reddy, V. Vijayakumar, Synthesis and biological evaluation of 4-(4-(di-(1H-indol-3-yl)methyl)phenoxy)-2-chloroquinolines, Indian J. Heterocycl. Chem. 19 (2009) 95-96.

    32. [32]

      [32] S. Sarveswari, V. Vijayakumar, A rapid microwave assisted synthesis of 1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(aryl)prop-2-en-1-ones and its anti bacterial and anti fungal evaluation, Arabian J. Chem. (2011), http://dx.doi.org/10.1016/j.arabjc.2011.01.032 (in press).

    33. [33]

      [33] S. Sarveswari, V. Vijayakumar, Synthesis and characterization of new 3-(4 5-dihydro-5-aryl)isoxazol-3-yl)-4-hydroxyl quinolin-2(1H)-ones and 3-(4-styryl)isoxazolo[4,5-c]quinolin-4(5H)-one derivatives, Arabian J. Chem. (2011), http:// dx.doi.org/10.1016/j.arabjc.2011.09.020 (in press).

  • 加载中
    1. [1]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    2. [2]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    3. [3]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    4. [4]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    7. [7]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    10. [10]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    17. [17]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    20. [20]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

Metrics
  • PDF Downloads(0)
  • Abstract views(606)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return