Citation: Xiao-Hong Miao, Song-De Han, Sui-Jun Liu, Xian-He Bu. Two lanthanide(III)-copper(II) chains based on [Cu2Ln2] clusters exhibiting high stability, magnetocaloric effect and slow magnetic relaxation[J]. Chinese Chemical Letters, ;2014, 25(6): 829-834. doi: 10.1016/j.cclet.2014.05.025 shu

Two lanthanide(III)-copper(II) chains based on [Cu2Ln2] clusters exhibiting high stability, magnetocaloric effect and slow magnetic relaxation

  • Corresponding author: Xian-He Bu, 
  • Received Date: 11 April 2014
    Available Online: 15 May 2014

    Fund Project:

  • Two 3d-4f heterometallic one-dimensional chains with neutral 4,4'-bipyridine ligands as linkers and [Cu2Ln2] clusters (Ln=Gd for 1, Dy for 2) as nodes have been hydrothermally synthesized and structurally characterized. Magnetic studies indicate that complex 1 exhibits a relatively large magnetocaloric effect, with an entropy change -△Smmax=24:8 J kg-1 K-1, whilst, complex 2 features slow magnetic relaxation at low temperature.
  • 加载中
    1. [1]

      [1] (a) A. Bencini, C. Benelli, A. Caneschi, et al., Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions, J. Am. Chem. Soc. 107 (1985) 8128-8136;(b) R.E.P. Winpenny, The structures and magnetic properties of complexes containing 3d-and 4f-metals, Chem. Soc. Rev. 27 (1998) 447-452;(c) M. Sakamoto, K. Manseki, H. Okawa, d-f Heteronuclear complexes: synthesis, structures and physicochemical aspects, Coord. Chem. Rev. 219 (2001) 379-414;(d) C. Benelli, D. Gatteschi, Magnetismof lanthanides in molecular materials with transition-metal ions and organic radicals, Chem. Rev. 102 (2002) 2369-2388;(e) A.M. Ako, V. Mereacre, R. Clerac, et al., Tridecanuclear [MnIII5LnIII8] complexes derived from N-tbutyl-diethanolamine: synthesis, structures, and magnetic properties, Inorg. Chem. 48 (2009) 6713-6723.

    2. [2]

      [2] (a) O. Kahn, Chemistry and physics of supramolecular magnetic materials, Acc. Chem. Res. 33 (2000) 647-657;(b) G.M. Li, T. Akitsu, O. Sato, Y. Einaga, Photoinduced magnetization of the cyanobridged 3d-4f heterobimetallic assembly Nd(DMF)4(H2O)3(μ-CN)Fe(CN)5H2O (DMF=N,N-dimethylformamide), J. Am. Chem. Soc. 125 (2003) 12396-12397;(c) T.C. Stamatatos, S.J. Teat, W. Wernsdorfer, et al., Enhancing the quantum properties of manganese-lanthanide single-molecule magnets: observation of quantum tunneling steps in the hysteresis loops of a {Mn12Gd} cluster, Angew. Chem. Int. Ed. 48 (2009) 521-524;(d) D. Schray, G. Abbas, Y.H. Lan, et al., Combined magnetic susceptibility measurements and 57Fe mössbauer spectroscopy on a ferromagnetic {FeIII4Dy4} ring, Angew. Chem. Int. Ed. 49 (2010) 5185-5188.

    3. [3]

      [3] (a) M. Evangelisti, F. Luis, L.J. de Jongh, M. Affronte, Magnetothermal properties of molecule-based materials, J. Mater. Chem. 16 (2006) 2534-2549;(b) M. Evangelisti, E.K. Brechin, Recipes for enhanced molecular cooling, Dalton Trans. 39 (2010) 4672-4676;(c) T.N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti, E.K. Brechin, The importance of being exchanged: [GdIII4MII8(OH)8(L)8(O2CR)8]4+ clusters for magnetic refrigeration, Angew. Chem. Int. Ed. 51 (2012) 4633-4636;(d) J.B. Peng, Q.C. Zhang, X.J. Kong, et al., A 48-metal cluster exhibiting a large magnetocaloric effect, Angew. Chem. Int. Ed. 50 (2011) 10649-10652;(e) Y.Z. Zheng, M. Evangelisti, F. Tuna, R.E.P. Winpenny, Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants, J. Am. Chem. Soc. 134 (2012) 1057-1065;(f) Y.Z. Zheng, G.J. Zhou, Z.P. Zheng, R.E.P. Winpenny, Molecule-based magnetic coolers, Chem. Soc. Rev. 43 (2014) 1462-1475.

    4. [4]

      [4] (a) F.S. Guo, J.D. Leng, J.L. Liu, Z.S. Meng, M.L. Tong, Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect, Inorg. Chem. 51 (2012) 405-413;(b) S.J. Liu, J.P. Zhao, J. Tao, et al., An unprecedented decanuclear GdIII cluster for magnetic refrigeration, Inorg. Chem. 52 (2013) 9163-9165;(c) J.M. Jia, S.J. Liu, Y. Cui, et al., 3D GdIII complex containing Gd16 macrocycles exhibiting large magnetocaloric effect, Cryst. Growth Des. 13 (2013) 4631-4634;(d) Y.C. Chen, F.S. Guo, Y.Z. Zheng, et al., Gadolinium(III)-hydroxy ladders trapped in succinate frameworks with optimized magnetocaloric effect, Chem. Eur. J. 19 (2013) 13504-13510;(e) F.S. Guo, Y.C. Chen, L.L. Mao, et al., Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd38} cage versus a {Gd48} barrel, Chem. Eur. J. 19 (2013) 14876-14885.

    5. [5]

      [5] (a) J.W. Sharples, D. Collison, Coordination compounds and the magnetocaloric effect, Polyhedron 54 (2013) 91-103;(b) L.Z. Chen, D.D. Huang, Synthesis, structure and dielectric properties of a novel Gd coordination polymer based on 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate, Chin. Chem. Lett. 25 (2014) 279-282.

    6. [6]

      [6] (a) R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Magnetic bistability in a metal-ion cluster, Nature 365 (1993) 141-143;(b) D.P. Mills, F. Moro, J. McMaster, et al., A delocalized arene-bridged diuranium single-molecule magnet, Nat. Chem. 3 (2011) 454-460;(c) J. Schwöbel, S.H. Fu, J. Brede, et al., Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets, Nat. Commun. 3 (2012) 953;(d) D. Gatteschi, R. Sessoli, Quantum tunneling of magnetization and related phenomena in molecular materials, Angew. Chem. Int. Ed. 42 (2003) 268-297;(e) R.N. Liu, L.C. Li, X.L. Wang, et al., Smooth transition between SMM and SCMtype slow relaxing dynamics for a 1-D assemblage of {Dy(nitronyl nitroxide)2} units, Chem. Commun. 46 (2010) 2566-2568;(f) X.W. Feng, J.J. Liu, T.D. Harris, S. Hill, J.R. Long, Slow magnetic relaxation induced by a large transverse zero-field splitting in a MnIIReIV(CN)2 single-chain magnet, J. Am. Chem. Soc. 134 (2012) 7521-7529;(g) Y. Zhang, X.B. Han, Z.M. Zhang, J.L. Liu, E.B. Wang, A {Ni7} cluster-containing sandwich-type phosphotungstate functionalized by organic bisphosphonate ligands and its two-dimensional supramolecular structure, Chin. Chem. Lett. 24 (2013) 581-584;(h) B. Liu, B.W. Wang, Z.M. Wang, S. Gao, Static field induced magnetic relaxations in dinuclear lanthanide compounds of [phen2Ln2(HCOO)4(HCOO)2-2x(NO3)2x] (1, Ln=Gd and x=0.52. 2, Ln=Er and x=0.90. phen=1, 10-phenanthroline), Sci. China Chem. 55 (2012) 926-933.

    7. [7]

      [7] (a) E. Ruiz, J. Cirera, J. Cano, et al., Can large magnetic anisotropy and high spin really coexist? Chem. Commun. 44 (2008) 52-54;(b) O. Waldmann, A criterion for the anisotropy barrier in single-molecule magnets, Inorg. Chem. 46 (2007) 10035-10037;(c) R. Sessoli, Molecular nanomagnetism in florence: advancements and perspectives, Inorg. Chim. Acta 361 (2008) 3356-3364.

    8. [8]

      [8] (a) R. Inglis, L.F. Jones, K. Mason, et al., Ground spin state changes and 3D networks of exchange coupled [MnIII3] single-molecule magnets, Chem. Eur. J. 14 (2008) 9117-9121;(b) J. Yoo, W. Wernsdorfer, E.C. Yang, et al., One-dimensional chain of tetranuclear manganese single-molecule magnets, Inorg. Chem. 44 (2005) 3377-3379;(c) L. Lecren, O. Roubeau, C. Coulon, et al., Slow relaxation in a one-dimensional rational assembly of antiferromagnetically coupled [Mn4] single-molecule magnets, J. Am. Chem. Soc. 127 (2005) 17353-17363;(d) H. Miyasaka, K. Nakata, L. Lecren, et al., Two-dimensional networks based on Mn4 complex linked by dicyanamide anion: from single-molecule magnet to classical magnet behavior, J. Am. Chem. Soc. 128 (2006) 3770-3783;(e) L.F. Jones, A. Prescimone,M. Evangelisti, E.K. Brechin, 1D chains of Mn6 singlemolecule magnets, Chem. Commun. 2009 (2009) 2023-2025;(f) A.D. Katsenis, R. Inglis, A. Prescimone, E.K. Brechin, G.S. Papaefstathiou, Twodimensional frameworks built from Single-Molecule Magnets, CrystEngComm 14 (2012) 1216-1218.

    9. [9]

      [9] (a) G. Novitchi, W. Wernsdorfer, L.F. Chibotaru, et al., Supramolecular "doublepropeller" dimers of hexanuclear CuII/LnIII complexes: a {Cu3Dy3}2 single-molecule magnet, Angew. Chem. Int. Ed. 48 (2009) 1319-1614;(b) T.D. Pasatoiu, M. Etienne, A.M. Madalan, M. Andruh, R. Sessoli, Dimers and chains of {3d-4f} single molecule magnets constructed from heterobimetallic tectons, Dalton Trans. 39 (2010) 4802-4808.

    10. [10]

      [10] R. Sessoli, A.K. Powell, Strategies towards single molecule magnets based on lanthanide ions, Coord. Chem. Rev. 253 (2009) 2328-2341.

    11. [11]

      [11] (a) Z. He, C. He, E.Q. Gao, et al., Lanthanide-transition heterometallic extended structures with novel orthogonal metalloligand as building block, Inorg. Chem. 42 (2003) 2206-2208;(b) Q. Yue, J. Yang, G.H. Li, et al., Three-dimensional 3d-4f heterometallic coordination polymers: synthesis, structures, and magnetic properties, Inorg. Chem. 44 (2005) 5241-5246;(c) S.J. Liu, W.C. Song, L. Xue, et al., Three new Cu(II)-Ln(III) heterometallic coordination polymers constructed from quinolinic acid and nicotinic acid: synthesis, structures, and magnetic properties, Sci. China Chem. 55 (2012) 1064-1072;(d) J.W. Cheng, J. Zhang, S.T. Zheng, M.B. Zhang, G.Y. Yang, Lanthanide-transitionmetal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels, Angew. Chem. Int. Ed. 45 (2006) 73-77.

    12. [12]

      [12] H.Y. Xu, F.H. Zhao, Y.X. Che, J.M. Zheng, Three 3d-4f heterometallic complexes constructed from oxalic acid and benzimidazole-5, 6-dicarboxylic acid, CrystEng-Comm 14 (2012) 6869-6874.

    13. [13]

      [13] Rigaku, Process-Auto, Rigaku Americas Corporation, The Woodlands, Texas, 1998.

    14. [14]

      [14] G.M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    15. [15]

      [15] A.K. Chaudhari, B. Joarder, E. Rivie` re, G. Rogez, S.K. Ghosh, Nitrate-bridged "pseudo-double-propeller"-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties, Inorg. Chem. 51 (2012) 9159-9161.

    16. [16]

      [16] (a) G. Karotsis, M. Evangelisti, S.J. Dalgarno, E. Brechin, A calix[4]arene 3d/4f magnetic cooler, Angew. Chem. Int. Ed. 48 (2009) 9928-9931;(b) E. Cremades, S. Go´mez-Coca, D. Aravena, S. Alvarez, E. Ruiz, Theoretical study of exchange coupling in 3d-Gd complexes: large magnetocaloric effect systems, J. Am. Chem. Soc. 134 (2012) 10532-10542.

    17. [17]

      [17] J.L. Liu, W.Q. Lin, Y.C. Chen, et al., Symmetry-related [LnIII6MnIII12] clusters toward single-molecule magnets and cryogenic magnetic refrigerants, Inorg. Chem. 52 (2013) 457-463.

    18. [18]

      [18] (a) A. Khan, Y. Lan, G.E. Kostakis, C.E. Anson, A.K. Powell, Using the flexible ligand bis(2-hydroxyethyl)amino-tris (hydroxymethyl)methane ("bis-tris") to access a family of 3d-4fMnIII4Ln4 complexes, Dalton Trans. 41 (2012) 8333-8339;(b) G.J. Sopasis, A.B. Canaj, A. Philippidis, et al., Heptanuclear heterometallic[Cu6Ln] clusters: trapping lanthanides into copper cages with artificial amino acids, Inorg. Chem. 51 (2012) 5911-5918.

  • 加载中
    1. [1]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    2. [2]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    6. [6]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    9. [9]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    10. [10]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    11. [11]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    12. [12]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    13. [13]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    14. [14]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    15. [15]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    16. [16]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    17. [17]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(0)
  • Abstract views(588)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return