Citation: Ning Cheng, Wen-Bin Yi, Qi-Qin Wang, Sheng-Ming Peng, Xiao-Qing Zou. Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives[J]. Chinese Chemical Letters, ;2014, 25(7): 1094-1098. doi: 10.1016/j.cclet.2014.05.021 shu

Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives

  • Corresponding author: Sheng-Ming Peng,  Xiao-Qing Zou, 
  • Received Date: 13 March 2014
    Available Online: 30 April 2014

    Fund Project: This work was financially supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20114301120004) (No. 20114301120004) Hunan Provincial Natural Science Foundation of China (No. 12JJ6081) (No. 12JJ6081) Dr.'s Start-up Foundation of Xiangtan University (No. 06KZjKZ08035) (No. 06KZjKZ08035)

  • Several derivatives have been synthesized from chrysin, diosmetin, apigenin, and luteolin, which were isolated from diverse natural plants. The a-glucosidase inhibitory activity of these compounds was evaluated. The glucosidase inhibitory activity of all derivatives (IC50 < 24.396 μmol/L) was higher compared with that of the reference drug, acarbose (IC50=563.601±40.492 mmol/L), and 1-deoxynojirimycin (IC50=226.912±12.573 μmol/L). O3',7-Hexyl diosmetin (IC50=2.406 0.101 mmol/L) was the most potent inhibitor identified. These compounds showed a higher inhibitory ability compared with their precursors except the luteolin derivatives. In general, the inhibitory activity of the synthetic derivatives was enhanced with long alkyl chains at positions 3', 4' and 7 of the flavonoid.
  • 加载中
    1. [1]

      [1] D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030, Diabetes Res. Clin. Pract. 94 (2011) 311-321.

    2. [2]

      [2] S.I. Taylor, D. Accili, Y. Imai, Insulin resistance or insulin deficiency: which is the primary cause of NIDDM? Diabetes 43 (1994) 735-740.

    3. [3]

      [3] D. Porte Jr., β-Cells in type II diabetes mellitus, Diabetes 40 (1991) 166-180.

    4. [4]

      [4] A.E. Butler, J. Janson, S. Bonner-Weir, et al., β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes, Diabetes 52 (2003) 102-110.

    5. [5]

      [5] P.C. Tang, Z.G. Lin, Y. Wang, et al., Design and synthesis of DPP-4 inhibitor for the treatment of type 2 diabetes, Chin. Chem. Lett. 21 (2010) 253-256.

    6. [6]

      [6] Y.H. Wu, Synthesis of (S)-2-ethoxy-3-phenylpropanoic acid derivatives and their insulin-sensitizing activity, Chin. J. Chem. 25 (2007) 265-267.

    7. [7]

      [7] A.H. Samad, T.S.T. Willing, K.G.M. Alberti, R. Taylor, Effects of BAYm 1099, new aglucosidase inhibitor, on acute metabolic responses and metabolic control in NIDDM over 1 mo, Diabetes Care 11 (1988) 337-344.

    8. [8]

      [8] N. Asano, Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13 (2003) 93R-104R.

    9. [9]

      [9] K. O'Dea, J. Turton, Optimum effectiveness of intestinal alpha-glucosidase inhibitors: importance of uniform distribution through a meal, Am. J. Clin. Nutr. 41 (1985) 511-516.

    10. [10]

      [10] P. Lefebvre, A. Scheen, The use of acarbose in the prevention and treatment of hypoglycaemia, Eur. J. Clin. Invest. 24 (1994) 40-44.

    11. [11]

      [11] L.J. Scott, C.M. Spencer, Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus, Drugs 59 (2000) 521-549.

    12. [12]

      [12] L.K. Campbell, D.E. Baker, R.K. Campbell, Miglitol: assessment of its role in the treatment of patients with diabetes mellitus, Ann. Pharmacother. 34 (2000) 1291-1301.

    13. [13]

      [13] A.J. Krentz, C.J. Bailey, Oral antidiabetic agents, Drugs 65 (2005) 385-411.

    14. [14]

      [14] D. Nathan, J. Buse, M. Davidson, et al., Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy, Diabetologia 49 (2006) 1711-1721.

    15. [15]

      [15] S.H. Hsiao, L.H. Liao, P.N. Cheng, T.J. Wu, Hepatotoxicity associated with acarbose therapy, Ann. Pharmacother. 40 (2006) 151-154.

    16. [16]

      [16] Z.Y. Du, R.R. Liu, W.Y. Shao, et al., α-Glucosidase inhibition of natural curcuminoids and curcumin analogs, Eur. J. Med. Chem. 41 (2006) 213-218.

    17. [17]

      [17] E.B. de Melo, A. da Silveira Gomes, I. Carvalho, α-and β-glucosidase inhibitors: chemical structure and biological activity, Tetrahedron 62 (2006) 10277-10302.

    18. [18]

      [18] Y.I. Kwon, E. Apostolidis, K. Shetty, In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension, Bioresour. Technol. 99 (2008) 2981-2988.

    19. [19]

      [19] R. Tundis, M. Loizzo, F. Menichini, Natural products as-amylase and-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini-Rev. Med. Chem. 10 (2010) 315-331.

    20. [20]

      [20] L.G. Ranilla, Y.I. Kwon, E. Apostolidis, K. Shetty, Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America, Bioresour. Technol. 101 (2010) 4676-4689.

    21. [21]

      [21] M. Liu, W. Zhang, J. Wei, X. Lin, Synthesis and α-glucosidase inhibitory mechanisms of bis(2, 3-dibromo-4, 5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor, Mar. Drugs 9 (2011) 1554-1565.

    22. [22]

      [22] R.R. Rao, A.K. Tiwari, P.P. Reddy, et al., Synthesis of antihyperglycemic, α-glucosidase inhibitory, and DPPH free radical scavenging furanochalcones, Med. Chem. Res. 21 (2012) 760-774.

    23. [23]

      [23] J.D. Xu, L.W. Zhang, Y.F. Liu, Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3', 4', 7-triacetoxyethoxyquercetin, Chin. Chem. Lett. 24 (2013) 223-226.

    24. [24]

      [24] J.B. Zheng, H.F. Zhang, H. Gao, Investigation on electrochemical behavior and scavenging superoxide anion ability of chrysin at mercury electrode, Chin. J. Chem. 23 (2005) 1042-1046.

    25. [25]

      [25] H.D. Ly, S.G. Withers, Mutagenesis of glycosidases, Annu. Rev. Biochem. 68 (1999) 487-522.

    26. [26]

      [26] T. Schewe, Y. Steffen, H. Sies, How do dietary flavanols improve vascular function? A position paper, Arch. Biochem. Biophys. 476 (2008) 102-106.

    27. [27]

      [27] M.N. Clifford, Chlorogenic acids and other cinnamates -nature, occurrence and dietary burden, J. Sci. Food Agric. 79 (1999) 362-372.

    28. [28]

      [28] M. Richelle, I. Tavazzi, E. Offord, Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving, J. Agric. Food Chem. 49 (2001) 3438-3442.

    29. [29]

      [29] A. Crozier, I.B. Jaganath, M.N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Nat. Prod. Rep. 26 (2009) 1001-1043.

    30. [30]

      [30] Q.Q. Wang, N. Cheng, X.W. Zheng, S.M. Peng, X.Q. Zou, Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors, Bioorg. Med. Chem. 21 (2013) 4301-4310.

    31. [31]

      [31] J.H. Cui, D. Hu, X. Zhang, Z. Jing, et al., Design and synthesis of new 7, 8-dimethoxya-naphthoflavones as CYP1A1 inhibitors, Chin. Chem. Lett. 24 (2013) 215-218.

    32. [32]

      [32] K. Hanhineva, R. Törrönen, I. Bondia-Pons, et al., Impact of dietary polyphenols on carbohydrate metabolism, Int. J. Mol. Sci. 11 (2010) 1365-1402.

    33. [33]

      [33] T. Nishioka, J. Kawabata, Y. Aoyama, Baicalein, an a-glucosidase inhibitor from Scutellaria baicalensis, J. Nat. Prod. 61 (1998) 1413-1415.

    34. [34]

      [34] H.W. Ryu, B.W. Lee, M.J. Curtis-Long, et al., Polyphenols from Broussonetia papyrifera displaying potent a-glucosidase inhibition, J. Agric. Food Chem. 58 (2009) 202-208.

    35. [35]

      [35] K. Tadera, Y. Minami, K. Takamatsu, T. Matsuoka, Inhibition of α-glucosidase and a-amylase by flavonoids, J. Nutr. Sci. Vitaminol. (Tokyo) 52 (2006) 149-153.

    36. [36]

      [36] W. Hakamata, I. Nakanishi, Y. Masuda, et al., Planar catechin analogues with alkyl side chains: a potent antioxidant and an α-glucosidase inhibitor, J. Am. Chem. Soc. 128 (2006) 6524-6525.

    37. [37]

      [37] J.S. Shin, K.S. Kim, M.B. Kim, J.H. Jeong, B.K. Kim, Synthesis and hypoglycemic effect of chrysin derivatives, Bioorg. Med. Chem. Lett. 9 (1999) 869-874.

    38. [38]

      [38] D.C. Wan, J.J. Yuan, Z.L. Yang, et al., Facile O-alkylation of highly hydrophilic hyperbranched polyglycerol, Chin. Chem. Lett. 18 (2007) 192-194.

    39. [39]

      [39] Y. Kashima, H. Yamaki, T. Suzuki, M. Miyazawa, Structure-activity relationships of bergenin derivatives effect on α-glucosidase inhibition, J. Enzyme Inhib. Med. Chem. 28 (2013) 1162-1170.

    40. [40]

      [40] Y.Q. Li, F.C. Zhou, F. Gao, J.S. Bian, F. Shan, Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase, J. Agric. Food. Chem. 57 (2009) 11463-11468.

    41. [41]

      [41] W. Li, K. Wei, H. Fu, K. Koike, Structure and absolute configuration of clerodane diterpene glycosides and a rearranged cadinane sesquiterpene glycoside from the stems of Tinospora sinensis, J. Nat. Prod. 70 (2007) 1971-1976.

    42. [42]

      [42] S. Adisakwattana, P. Charoenlertkul, S. Yibchok-anun, α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose, J. Enzyme Inhib. Med. Chem. 24 (2009) 65-69.

    43. [43]

      [43] C.M. Ma, M. Hattori, M. Daneshtalab, L. Wang, Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent α-glucosidase inhibitors, J. Med. Chem. 51 (2008) 6188-6194.

    44. [44]

      [44] G.L. Li, J.Y. He, A. Zhang, et al., Toward potent α-glucosidase inhibitors based on xanthones: a closer look into the structure-activity correlations, Eur. J. Med. Chem. 46 (2011) 4050-4055.

    45. [45]

      [45] T.D. Heightman, A.T. Vasella, Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases, Angew. Chem. Int. Ed. 38 (1999) 750-770.

    46. [46]

      [46] A. Vasella, G.J. Davies, M. Böhm, Glycosidase mechanisms, Curr. Opin. Chem. Biol. 6 (2002) 619-629.

    47. [47]

      [47] D.L. Zechel, S.G. Withers, Glycosidase mechanisms: anatomy of a finely tuned catalyst, Acc. Chem. Res. 33 (2000) 11-18.

    48. [48]

      [48] H. Gao, T. Nishioka, J. Kawabata, T. Kasai, Structure-activity relationships for aglucosidase inhibition of baicalein, 5, 6, 7-trihydroxyflavone: the effect of A-ring substitution, Biosci. Biotechnol. Biochem. 68 (2004) 369-375.

    49. [49]

      [49] V. Kumar, S. Kumar, P. Rani, Pharmacophore modeling and 3D-QSAR studies on flavonoids as a-glucosidase inhibitors, Der Pharma Chemica 2 (2010) 324-335.

  • 加载中
    1. [1]

      Xifeng LuPei Su . Design and application of metal-organic frameworks derivatives as 3-electron ORR electrocatalysts for OH generation in wastewater treatment: A review. Chinese Chemical Letters, 2025, 36(11): 110909-. doi: 10.1016/j.cclet.2025.110909

    2. [2]

      Yao ZouDifei GongHaiguang YangHongmei YuGuorong HeNingbo GongLianhua FangGuanhua DuYang Lu . Prediction, screening, characterization, antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid. Chinese Chemical Letters, 2025, 36(9): 110768-. doi: 10.1016/j.cclet.2024.110768

    3. [3]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    6. [6]

      Tingting DuSiyu LuZongnan ZhuMei ZhuYan ZhangJian ZhangJixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912

    7. [7]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    8. [8]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    9. [9]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    10. [10]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    11. [11]

      Qian WangDong YangWenxing XinYongqi WangWenchang HanWengxiang YanChunman YangFei WangYiyong ZhangZiyi ZhuXue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669

    12. [12]

      Huijuan ZhangChenglin LiangXinyi DingMeng ZhangSiyu LuLin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525

    13. [13]

      Lingdan KongPingping HuangFeng YuanYue ZhangXiaoqian ShiKang HanKeke LiuQing XuWenjing ZhangTom LawsonXiaoru XiaYong LiuYuepeng Jin . A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy. Chinese Chemical Letters, 2025, 36(9): 111030-. doi: 10.1016/j.cclet.2025.111030

    14. [14]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    15. [15]

      Rongrong ZhengZuxiao ChenQiuyuan LiNi YangWenjun ZhangChuyu HuangLinping ZhaoXin ChenHong ChengShiying Li . Endoplasmic reticulum targeting photodynamic oxidizer to boost anti-tumor immunity by intensifying immunogenic cell death in conjunction with IDO1 inhibition. Chinese Chemical Letters, 2025, 36(12): 110865-. doi: 10.1016/j.cclet.2025.110865

    16. [16]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    17. [17]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    18. [18]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    19. [19]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    20. [20]

      Junlong TangYuhan ZhaoYangbin JinLiren ZhangYuanfang WangWanqing WuHuanfeng Jiang . Palladium-catalyzed modular biomimetic synthesis of lignans derivatives. Chinese Chemical Letters, 2025, 36(7): 110969-. doi: 10.1016/j.cclet.2025.110969

Metrics
  • PDF Downloads(0)
  • Abstract views(1083)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return