Citation:
Ke-Rang Wang, Feng Qian, Xiao-Man Wang, Guan-Hai Tan, Rui-Xue Rong, Zhi-Ran Cao, Hua Chen, Ping-Zhu Zhang, Xiao-Liu Li. Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations[J]. Chinese Chemical Letters,
;2014, 25(7): 1087-1093.
doi:
10.1016/j.cclet.2014.04.020
-
A series of novel naphthalimide derivatives modified by amino acids and their dichloroacetamide derivatives at the 3-position have been synthesized. Their cytotoxic activities were preliminarily evaluated against Hela, A549 and K562 cells, which showed that the length of the side chains of the amino acids influenced the cytotoxic activities. Moreover, compound 7d showed a very good cytotoxic activity against A549 cells with an IC50 value of 4.78 mmol L-1. Furthermore, the UV-vis, fluorescence, and circular dichroism (CD) spectroscopies and thermal denaturation experiment indicated that compounds 6a, 6d and 7a, 7d, as DNA intercalators, exhibited binding affinities with calf-thymus DNA (Ct-DNA).
-
Keywords:
- Naphthalimide,
- Dichloroacetamide,
- Cytotoxic activity,
- DNA binding
-
-
-
[1]
[1] M.F. Braña, A. Ramos, Naphthalimides as anti-cancer agents: synthesis and biological activity, Curr. Med. Chem. -Anticancer Agents 1 (2001) 237-255.
-
[2]
[2] L. Ingrassia, F. Lefranc, R. Kiss, T. Mijatovic, Naphthalimides and azonafides as promising anti-cancer agents, Curr. Med. Chem. 16 (2009) 1192-1213.
-
[3]
[3] M. Lv, H. Xu, Overview of naphthalimide analogs as anticancer agents, Curr. Med. Chem. 16 (2009) 4797-4813.
-
[4]
[4] T. Mijatovic, T. Mahieu, C. Bruyère, et al., UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers, Neoplasia 10 (2008) 573-586.
-
[5]
[5] E.V. Quaquebeke, T. Mahieu, P. Dumont, et al., 2,2,2-Trichloro-N-({2-[2-(dimethylamino) ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-yl}carbamoyl) acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity, J. Med. Chem. 50 (2007) 4122-4134.
-
[6]
[6] A. Kamal, N.R. Bolla, P.S. Srikanth, A.K. Srivastava, Naphthalimide derivatives with therapeutic characteristics: a patent review, Expert. Opin. Ther. Patents 23 (2013) 299-317.
-
[7]
[7] S. Banerjee, E.B. Veale, C.M. Phelan, et al., Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents, Chem. Soc. Rev. 42 (2013) 1601-1618.
-
[8]
[8] S.Y. Tan, H. Yin, Z. Chen, X.H. Qian, Y.F. Xu, Oxo-heterocyclic fused naphthalimides as antitumor agents: synthesis and biological evaluation, Eur. J. Med. Chem. 62 (2013) 130-138.
-
[9]
[9] D. Mahadevan, D.W. Northfelt, P. Chalasani, et al., Phase I trial of UNBS5162, a novel naphthalimide in patients with advanced solid tumors or lymphoma, Int. J. Clin. Oncol. 18 (2013) 934-941.
-
[10]
[10] D.A. Tennant, R.V. Duraán, E. Gottlieb, Targeting metabolic transformation for cancer therapy, Nat. Rev. Cancer 10 (2010) 267-277.
-
[11]
[11] I. Papandreou, T. Goliasova, N.C. Denko, Anticancer drugs that target metabolism: is dichloroacetate the new paradigm? Int. J. Cancer 128 (2011) 1001-1008.
-
[12]
[12] C. Granchi, F. Minutolo, Anticancer agents that counteract tumor glycolysis, ChemMedChem 7 (2012) 1318-1350.
-
[13]
[13] F. Wang, M.A. Ogasawara, P. Huang, Small mitochondria-targeting molecules as anti-cancer agents, Mol. Aspects Med. 31 (2010) 75-92.
-
[14]
[14] J.S. Butler, P.J. Sadler, Targeted delivery of platinum-based anticancer complexes, Curr. Opin. Chem. Biol. 17 (2013) 175-188.
-
[15]
[15] S. Dhar, S.J. Lippard, Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 22199-22204.
-
[16]
[16] H.H. Xiao, L.S. Yan, Y. Zhang, et al., A dual-targeting hybrid platinum(IV) prodrug for enhancing efficacy, Chem. Commun. 48 (2012) 10730-10732.
-
[17]
[17] X.Xue, S.You,Q.Zhang, et al.,Mitaplatinincreases sensitivity of tumor cells tocisplatin by inducing mitochondrial dysfunction, Mol. Pharmacol. 9 (2012) 634-644.
-
[18]
[18] Y.C. Yang, P.H. Shang, C.M. Cheng, et al., Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: design, synthesis and biological evaluation, Eur. J. Med. Chem. 45 (2010) 4300-4306.
-
[19]
[19] T.W. Li, Y.C. Yang, C.M. Cheng, et al., Design, synthesis and biological evaluation of N-arylphenyl-2,2-dichloroacetamide analogues as anti-cancer agents, Bioorg. Med. Chem. Lett. 22 (2012) 7268-7271.
-
[20]
[20] T.W. Li, Y.C. Yong, C.M. Cheng, et al., Multi-substituted N-phenyl-2,2-dichloroacetamide analogues as anti-cancer drugs: design, synthesis and biological evaluation, Acta Pharm. Sin. 47 (2012) 354-363.
-
[21]
[21] J.A. Montgomery, A.T. Shortnacy, D.A. Carson, J.A. Secrist III, Synthesis and biological evaluation of irreversible inhibitors of aldose reductase, J. Med. Chem. 29 (1986) 2384-2389.
-
[22]
[22] E.C. Long, J.K. Barton, On demonstrating DNA intercalation, Acc. Chem. Res. 23 (1990) 271-273.
-
[23]
[23] X. Yang, W. Liu, W. Jin, G. Shen, R. Yu, DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone, Spectrochim. Acta A 55 (1999) 2719-2727.
-
[24]
[24] L.J. Xie, Y.F. Xu, F. Wang, et al., Synthesis of new amonafide analogues via coupling reaction and their cytotoxic evaluation and DNA-binding studies, Bioorg. Med. Chem. 17 (2009) 804-810.
-
[25]
[25] M. Kožurkovaá, D. Sabolovaá, H. Paulíkovaá, et al., DNA binding properties and evaluation of cytotoxic activity of 9,10-bis-N-substituted (aminomethyl)anthracenes, Int. J. Biol. Macromol. 41 (2007) 415-422.
-
[26]
[26] P. Uma Maheswari, M. Palaniandavar, DNA binding and cleavage activity of[Ru(NH3)4(diimide)]Cl2 complexes, Inorg. Chim. Acta 357 (2004) 901-912.
-
[27]
[27] X. Jiang, L. Shang, Z.X. Wang, S.J. Dong, Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA: pH effect, Biophys. Chem. 118 (2005) 42-50.
-
[28]
[28] P.U. Maheswari, M. Palaniandavar, DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines: effect of hydrogen-bonding on DNA-binding affinity, J. Inorg. Biochem. 98 (2004) 219-230.
-
[29]
[29] X.L. Li, Y.J. Lin, Q.Q. Wang, et al., The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: synthesis, cytotoxicity, DNA intercalation and photocleavage, Eur. J. Med. Chem. 46 (2011) 1274-1279.
-
[30]
[30] Z.C. Zhang, Y.Y. Yang, D.N. Zhang, et al., Acenaphtho[1,2-b]pyrrole derivatives as new family of intercalators: various DNA binding geometry and interesting antitumor capacity, Bioorg. Med. Chem. 14 (2006) 6962-6970.
-
[31]
[31] U. Chaveerach, A. Meenongwa, Y. Trongpanich, C. Soikum, P. Chaveerach, DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities, Polyhedron 29 (2010) 731-738.
-
[1]
-
-
-
[1]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[2]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[3]
Yu Hong , Yuqian Jiang , Chenhuan Yuan , Decai Wang , Yimeng Sun , Jian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909
-
[4]
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
-
[5]
Zhengyi Shi , Jie Yin , Yang Xiao , Zhangrong Hou , Fei Song , Jianping Wang , Qingyi Tong , Changxing Qi , Yonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458
-
[6]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[7]
Fengzhi Wang , Ke Hu , Jinquan Chen , Zhubin Hu , Haitao Sun , Tony D. James , Yufang Xu , Xuhong Qian . Meta-amino substituted naphthalimides exhibit large charge transfer and strong N-H vibrations enabling use as ratiometric fluorescent probe. Chinese Chemical Letters, 2026, 37(1): 110971-. doi: 10.1016/j.cclet.2025.110971
-
[8]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[9]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[10]
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
-
[11]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[12]
Qian Chen , Anyang Shen , Taotao Huang , Xinya Han , Jian Zhang , Hui Jiang , Renyong Liu , Yong Pan , Kui Zhang . Ultrasensitive and selective detection of chemical nerve agent simulants based on naphthalimide functionalized chitosan as fluorescent nanofibers. Chinese Chemical Letters, 2025, 36(7): 110331-. doi: 10.1016/j.cclet.2024.110331
-
[13]
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
-
[14]
Leyuan Sun , Xiaoyu Xie , Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079
-
[15]
Jun Xiong , Bi-Feng Yuan . PELSA: A novel method for highly sensitive identification of protein targets and binding regions. Chinese Chemical Letters, 2025, 36(12): 111527-. doi: 10.1016/j.cclet.2025.111527
-
[16]
Yongjian Jiang , Feng Cheng , Jun Zhou , Lei Zhan , Chunmei Li , Chengzhi Huang . Regulation of cancer cell apoptosis with DNA nanocalculator. Chinese Chemical Letters, 2026, 37(1): 110071-. doi: 10.1016/j.cclet.2024.110071
-
[17]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[18]
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
-
[19]
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
-
[20]
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1227)
- HTML views(36)
Login In
DownLoad: