Citation: Zhi Wang, Chun-Yu Wang, Hao-Ran Wang, Hong Zhang, Ya-Lun Su, Teng-Fei Ji, Lei Wang. Lipase-catalyzed Knoevenagel condensation between α, β-unsaturated aldehydes and active methylene compounds[J]. Chinese Chemical Letters, ;2014, 25(05): 802-804. doi: 10.1016/j.cclet.2014.03.036 shu

Lipase-catalyzed Knoevenagel condensation between α, β-unsaturated aldehydes and active methylene compounds

  • Corresponding author: Teng-Fei Ji,  Lei Wang, 
  • Received Date: 15 January 2014
    Available Online: 11 March 2014

    Fund Project:

  • A simple and efficient Knoevenagel condensation between α,β-unsaturated aldehydes and active methylene compounds is reported. Notably, this condensation can be catalyzed by PPL (lipase from porcine pancreas) with satisfied yields (49%-92%). Moreover, PPL induces moderate Z/E selectivity in the Knoevenagel condensation.
  • 加载中
    1. [1]

      [1] I. Nobeli, A.D. Favia, J.M. Thornton, Protein promiscuity and its implications for biotechnology, Nat. Biotechnol. 27 (2009) 157-167.

    2. [2]

      [2] A.B. Majumder, N.G. Ramesh, M.N. Gupta, A lipase catalyzed condensation reaction with a tricyclic diketone: yet another example of biocatalytic promiscuity, Tetrahedron Lett. 50 (2009) 5190-5193.

    3. [3]

      [3] M.T. Reetz, R. Mondiere, J.D. Carballeira, Enzyme promiscuity: first proteincatalyzed Morita-Baylis-Hillman reaction, Tetrahedron Lett. 48 (2007) 1679- 1681.

    4. [4]

      [4] M. Svedendahl, K. Hult, P. Berglund, Fast carbon-carbon bond formation by a promiscuous lipase, J. Am. Chem. Soc. 127 (2005) 17988-17989.

    5. [5]

      [5] X.F. Wei, Q.C. Zheng, T.F. Ji, et al., Addition of diethylzinc to aromatic aldehydes catalyzed by hydrolase, Chin. J. Catal. 30 (2009) 396-400.

    6. [6]

      [6] M.A. Ibrahim, M.A.M. Abdel-Hamed, N.M. El-Gohary, A new approach for the synthesis of bioactive heteroaryl thiazolidine-2,4-diones, J. Braz. Chem. Soc. 22 (2011) 1130-1139.

    7. [7]

      [7] M. Oguchi, K. Wada, H. Honma, et al., Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones, J. Med. Chem. 43 (2000) 3052-3066.

    8. [8]

      [8] M.S. Malamas, J. Sredy, I. Gunawan, et al., New azolidinediones as inhibitors of protein tyrosine phosphatase lb with antihyperglycemic properties, J. Med. Chem. 43 (2000) 995-1010.

    9. [9]

      [9] R. Murugan, S. Anbazhagan, S. Sriman Narayanan, Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3 + 2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives, Eur. J. Med. Chem. 44 (2009) 3272-3279.

    10. [10]

      [10] C.B. Yue, A.Q. Mao, Y.Y. Wei, M.J. Lü, Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions, Catal. Commun. 9 (2008) 1571-1574.

    11. [11]

      [11] G.W. Li, J. Xiao, W.Q. Zhang, Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber, Chin. Chem. Lett. 24 (2013) 52-54.

    12. [12]

      [12] K.P. Boroujeni, M. Jafarinasab, Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation, Chin. Chem. Lett. 23 (2012) 1067-1070.

    13. [13]

      [13] F. Marta, O. Monica, P. Laura, I. Achille, Electrochemically induced Knoevenagel condensation in solvent- and supporting electrolyte-free conditions, Green Chem. 9 (2007) 323-325.

    14. [14]

      [14] S. Balalaie, N. Nemati, Ammonium acetate-basic alumina catalyzed Knoevenagel condensation under microwave irradiation under solvent-free condition, Synth. Commun. 30 (2000) 869-875.

    15. [15]

      [15] M. James, A.S. Jennifer, W. Sonja, The ultrasound promoted Knoevenagel condensation of aromatic aldehydes, Tetrahedron Lett. 39 (1998) 8013-8016.

    16. [16]

      [16] Y.F. Lai, H. Zheng, S.J. Chai, P.F. Zhang, X.Z. Chen, Lipase-catalysed tandem Knoevenagel condensation and esterification with alcohol cosolvents, Green Chem. 12 (2010) 1917-1918.

    17. [17]

      [17] W. Hua, Z. Guan, X. Deng, Y.H. He, Enzyme catalytic promiscuity: the papaincatalyzed Knoevenagel reaction, Biochimie 94 (2012) 656-661.

    18. [18]

      [18] L. Wang, J.D. Tai, R. Wang, et al., Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis, Biotechnol. Appl. Biochem. 56 (2010) 1-6.

    19. [19]

      [19] R. Tian, C.H. Yang, X.F. Wei, et al., Optimization of APE1547-catalyzed enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid, Biotechnol. Bioproc. E 16 (2011) 337-342.

    20. [20]

      [20] Z. Wang, R. Wang, J. Tian, et al., The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents, J. Asian Nat. Prod. Res. 12 (2010) 56-63.

    21. [21]

      [21] E.N. Xun, J.X. Wang, H. Zhang, et al., Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent, J. Chem. Technol. Biotechnol. 88 (2013) 904-909.

    22. [22]

      [22] A.B. Martins, J.L.R. Friedrich, J.C. Cavalheiro, et al., Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene- divinylbenzene beads, Bioresour. Technol. 134 (2013) 417-422.

    23. [23]

      [23] Y.S. Lin, P.Y. Wang, A.C. Wu, S.W. Tsai, Lipase-catalyzed enantioselective resolution of (R,S)-N-2-methylalkanoyl-3-(2-pyridyl)pyrazoles in organic solvents, J. Mol. Catal. B: Enzym. 68 (2011) 245-249.

  • 加载中
    1. [1]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    2. [2]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    5. [5]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    6. [6]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    9. [9]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    12. [12]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    13. [13]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    16. [16]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    19. [19]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    20. [20]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return