Citation: Wei Jiang, Zheng-Long Yang, Ding Weng, Jun-Wei Wangb, Yun-Feng Lu, Min-Juan Zhang, Zhen-Zhong Yang. Solvothermal synthesis of PbTe/SnTe hybrid nanocrystals[J]. Chinese Chemical Letters, ;2014, 25(6): 849-853. doi: 10.1016/j.cclet.2014.03.031 shu

Solvothermal synthesis of PbTe/SnTe hybrid nanocrystals

  • Corresponding author: Zheng-Long Yang,  Yun-Feng Lu,  Zhen-Zhong Yang, 
  • Received Date: 24 January 2014
    Available Online: 12 March 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 51173074) (No. 51173074) the Key Project of Chinese Ministry of Education (No. 212099) (No. 212099)

  • PbTe/SnTe hybrid nanocrystals with designed shape, chemical composition and narrow size distribution were synthesized by an efficient solvothermal approach. This approach enables mass and economical synthesis of PbTe-based nanocrystals. The organic ligands were completely removed by pretreatment with a super-hydride solution, making it possible to fabricate fully dense and robust thermoelectric devices with increased electrical conductivity.
  • 加载中
    1. [1]

      [1] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science 297 (2002) 2229-2232.

    2. [2]

      [2] K.F. Hsu, S. Loo, F. Guo, et al., Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science 303 (2004) 818-821.

    3. [3]

      [3] Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68 (2003) 075304.

    4. [4]

      [4] J. Androulakis, K.F. Hsu, R. Pcionek, et al., Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m, Adv. Mater. 18 (2006) 1170-1173.

    5. [5]

      [5] M. Zhou, J. Li, T. Kita, Nanostructured AgPbmSbTem+2 system bulk materialswith enhanced thermoelectric performance, J. Am. Chem. Soc. 130 (2008) 4527-4532.

    6. [6]

      [6] V. Damodara Das, C. Bahulayan, Variation of electrical transport properties and thermoelectric figure of merit with thickness in 1% excess Te-doped Pb0.2Sn0.8Te thin films, Semicond. Sci. Technol. 10 (1995) 1638-1644.

    7. [7]

      [7] J.P. Heremans, V. Jovovic, E.S. Toberer, et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321 (2008) 554-557.

    8. [8]

      [8] L.D. Hicks, M.S. Dresselhaus, Effect of quantuμ-well structures on the thermoelectric figure of merit, Phys. Rev. B 47 (1993) 12727-12731.

    9. [9]

      [9] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631-16634.

    10. [10]

      [10] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high rooμ-temperature figures of merit, Nature 413 (2001) 597-602.

    11. [11]

      [11] M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Fabrication of highdensity, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates, Adv. Mater. 14 (2002) 665-667.

    12. [12]

      [12] M. Martin-González, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, High-density 40 nm diameter Sb-rich Bi2-xSbxTe3 nanowire arrays, Adv. Mater. 15 (2003) 1003-1006.

    13. [13]

      [13] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, et al., Silicon nanowires as efficient thermoelectric materials, Nature 451 (2008) 168-171.

    14. [14]

      [14] A.I. Hochbaum, R. Chen, R.D. Delgado, et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature 451 (2008) 163-167.

    15. [15]

      [15] T.C. Harman, D.L. Spears, M.J. Manfra, High thermoelectric figures of merit in PbTe quantum wells, J. Electron. Mater. 25 (1996) 1121-1127.

    16. [16]

      [16] H. Beyer, J. Nurnus, H. Bottner, et al., PbTe based superlattice structures with high thermoelectric efficiency, Appl. Phys. Lett. 80 (2002) 1216-1218.

    17. [17]

      [17] W. Wang, B. Poudel, D. Wang, Z. Ren, Synthesis of PbTe nanoboxes using a solvothermal technique, Adv. Mater. 17 (2005) 2110-2114.

    18. [18]

      [18] X.F. Qiu, Y.B. Lou, A.C.S. Samia, et al., PbTe nanorods by sonoelectrochemistry, Angew. Chem. Int. Ed. 44 (2005) 5855-5857.

    19. [19]

      [19] W.F. Liu, W. Cai, L.Z. Yao, Electrochemical deposition of well-ordered singlecrystal PbTe nanowire arrays, Chem. Lett. 36 (2007) 1362-1363.

    20. [20]

      [20] M. Fardy, A.I. Hochbaum, J. Goldberger, M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires, Adv. Mater. 19 (2007) 3047-3051.

    21. [21]

      [21] W.X. Zhang, L. Zhang, Y.W. Cheng, et al., Synthesis of nanocrystalline lead chalcogenides PbE (E=S, Se, or Te) from alkaline aqueous solutions, Mater. Res. Bull. 35 (2000) 2009-2015.

    22. [22]

      [22] D. Wang, C. Song, X. Fu, Z. Hu, Surfactant-assisted synthesis of cube-shaped PbTe and PbSe nanocrystals, J. Dispers. Sci. Technol. 28 (2007) 1197-1200.

    23. [23]

      [23] J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films, J. Am. Chem. Soc. 128 (2006) 3248-3255.

    24. [24]

      [24] W.G. Lu, J.Y. Fang, K.L. Stokes, J. Lin, Shape evolution and self assembly of monodisperse PbTe nanocrystals, J. Am. Chem. Soc. 126 (2004) 11798-11799.

    25. [25]

      [25] T. Mokari, M.J. Zhang, P.D. Yang, Shape, size, and assembly control of PbTe nanocrystals, J. Am. Chem. Soc. 129 (2007) 9864-9865.

    26. [26]

      [26] Z.H. Lin, M.Q. Wang, L.Z. Wei, et al., PbTe colloidal nanocrystals: synthesis, mechanism and infrared optical characteristics, J. Alloys Compd. 509 (2011) 5047-5049.

    27. [27]

      [27] Z.H. Lin, M.Q. Wang, L.Y. Zhang, et al., Equilibrium self-assembly of close-packed ordered PbTe nanocrystal thin film and near-infrared photoconductive detector, J. Mater. Chem. 22 (2012) 9082-9085.

    28. [28]

      [28] J. Joo, S.G. Kwon, T. Yu, et al., Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B 109 (2005) 15297-15302.

    29. [29]

      [29] C. Carlucci, H. Xu, B.F. Scremin, et al., Selective synthesis of TiO2 nanocrystals with morphology control with the microwave-solvothermal method, CrystEngComm 16 (2014) 1817-1824.

  • 加载中
    1. [1]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    2. [2]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    3. [3]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    4. [4]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    5. [5]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    6. [6]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    7. [7]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    8. [8]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    9. [9]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    10. [10]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    11. [11]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    12. [12]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    13. [13]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    14. [14]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    15. [15]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    16. [16]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    17. [17]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    18. [18]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    19. [19]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    20. [20]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

Metrics
  • PDF Downloads(0)
  • Abstract views(590)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return