Citation: Wei Jiang, Zheng-Long Yang, Ding Weng, Jun-Wei Wangb, Yun-Feng Lu, Min-Juan Zhang, Zhen-Zhong Yang. Solvothermal synthesis of PbTe/SnTe hybrid nanocrystals[J]. Chinese Chemical Letters, ;2014, 25(6): 849-853. doi: 10.1016/j.cclet.2014.03.031
-
PbTe/SnTe hybrid nanocrystals with designed shape, chemical composition and narrow size distribution were synthesized by an efficient solvothermal approach. This approach enables mass and economical synthesis of PbTe-based nanocrystals. The organic ligands were completely removed by pretreatment with a super-hydride solution, making it possible to fabricate fully dense and robust thermoelectric devices with increased electrical conductivity.
-
-
[1]
[1] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science 297 (2002) 2229-2232.
-
[2]
[2] K.F. Hsu, S. Loo, F. Guo, et al., Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science 303 (2004) 818-821.
-
[3]
[3] Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68 (2003) 075304.
-
[4]
[4] J. Androulakis, K.F. Hsu, R. Pcionek, et al., Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m, Adv. Mater. 18 (2006) 1170-1173.
-
[5]
[5] M. Zhou, J. Li, T. Kita, Nanostructured AgPbmSbTem+2 system bulk materialswith enhanced thermoelectric performance, J. Am. Chem. Soc. 130 (2008) 4527-4532.
-
[6]
[6] V. Damodara Das, C. Bahulayan, Variation of electrical transport properties and thermoelectric figure of merit with thickness in 1% excess Te-doped Pb0.2Sn0.8Te thin films, Semicond. Sci. Technol. 10 (1995) 1638-1644.
-
[7]
[7] J.P. Heremans, V. Jovovic, E.S. Toberer, et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321 (2008) 554-557.
-
[8]
[8] L.D. Hicks, M.S. Dresselhaus, Effect of quantuμ-well structures on the thermoelectric figure of merit, Phys. Rev. B 47 (1993) 12727-12731.
-
[9]
[9] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631-16634.
-
[10]
[10] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high rooμ-temperature figures of merit, Nature 413 (2001) 597-602.
-
[11]
[11] M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Fabrication of highdensity, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates, Adv. Mater. 14 (2002) 665-667.
-
[12]
[12] M. Martin-González, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, High-density 40 nm diameter Sb-rich Bi2-xSbxTe3 nanowire arrays, Adv. Mater. 15 (2003) 1003-1006.
-
[13]
[13] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, et al., Silicon nanowires as efficient thermoelectric materials, Nature 451 (2008) 168-171.
-
[14]
[14] A.I. Hochbaum, R. Chen, R.D. Delgado, et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature 451 (2008) 163-167.
-
[15]
[15] T.C. Harman, D.L. Spears, M.J. Manfra, High thermoelectric figures of merit in PbTe quantum wells, J. Electron. Mater. 25 (1996) 1121-1127.
-
[16]
[16] H. Beyer, J. Nurnus, H. Bottner, et al., PbTe based superlattice structures with high thermoelectric efficiency, Appl. Phys. Lett. 80 (2002) 1216-1218.
-
[17]
[17] W. Wang, B. Poudel, D. Wang, Z. Ren, Synthesis of PbTe nanoboxes using a solvothermal technique, Adv. Mater. 17 (2005) 2110-2114.
-
[18]
[18] X.F. Qiu, Y.B. Lou, A.C.S. Samia, et al., PbTe nanorods by sonoelectrochemistry, Angew. Chem. Int. Ed. 44 (2005) 5855-5857.
-
[19]
[19] W.F. Liu, W. Cai, L.Z. Yao, Electrochemical deposition of well-ordered singlecrystal PbTe nanowire arrays, Chem. Lett. 36 (2007) 1362-1363.
-
[20]
[20] M. Fardy, A.I. Hochbaum, J. Goldberger, M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires, Adv. Mater. 19 (2007) 3047-3051.
-
[21]
[21] W.X. Zhang, L. Zhang, Y.W. Cheng, et al., Synthesis of nanocrystalline lead chalcogenides PbE (E=S, Se, or Te) from alkaline aqueous solutions, Mater. Res. Bull. 35 (2000) 2009-2015.
-
[22]
[22] D. Wang, C. Song, X. Fu, Z. Hu, Surfactant-assisted synthesis of cube-shaped PbTe and PbSe nanocrystals, J. Dispers. Sci. Technol. 28 (2007) 1197-1200.
-
[23]
[23] J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films, J. Am. Chem. Soc. 128 (2006) 3248-3255.
-
[24]
[24] W.G. Lu, J.Y. Fang, K.L. Stokes, J. Lin, Shape evolution and self assembly of monodisperse PbTe nanocrystals, J. Am. Chem. Soc. 126 (2004) 11798-11799.
-
[25]
[25] T. Mokari, M.J. Zhang, P.D. Yang, Shape, size, and assembly control of PbTe nanocrystals, J. Am. Chem. Soc. 129 (2007) 9864-9865.
-
[26]
[26] Z.H. Lin, M.Q. Wang, L.Z. Wei, et al., PbTe colloidal nanocrystals: synthesis, mechanism and infrared optical characteristics, J. Alloys Compd. 509 (2011) 5047-5049.
-
[27]
[27] Z.H. Lin, M.Q. Wang, L.Y. Zhang, et al., Equilibrium self-assembly of close-packed ordered PbTe nanocrystal thin film and near-infrared photoconductive detector, J. Mater. Chem. 22 (2012) 9082-9085.
-
[28]
[28] J. Joo, S.G. Kwon, T. Yu, et al., Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B 109 (2005) 15297-15302.
-
[29]
[29] C. Carlucci, H. Xu, B.F. Scremin, et al., Selective synthesis of TiO2 nanocrystals with morphology control with the microwave-solvothermal method, CrystEngComm 16 (2014) 1817-1824.
-
[1]
-
-
[1]
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
-
[2]
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
-
[3]
Dongying Fu , Lin Pan , Yanli Ma , Yue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621
-
[4]
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
-
[5]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[6]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[7]
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
-
[8]
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
-
[9]
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
-
[10]
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
-
[11]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[12]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[13]
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
-
[14]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[15]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[16]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[17]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[18]
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
-
[19]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[20]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(590)
- HTML views(5)