Citation: Ke Wang, Yan Li, Li-Jing Zhang, Xiao-Guang Chen, Zhi-Qiang Feng. Synthesis and in vitro cytotoxic activities of sorafenib derivatives[J]. Chinese Chemical Letters, ;2014, 25(05): 702-704. doi: 10.1016/j.cclet.2014.03.020 shu

Synthesis and in vitro cytotoxic activities of sorafenib derivatives

  • Corresponding author: Zhi-Qiang Feng, 
  • Received Date: 21 January 2014
    Available Online: 28 February 2014

    Fund Project: We gratefully acknowledge the generous support provided by the National S&T Major Special Project on Major New Drug Innovation (No. 2012ZX09103-101-019). (No. 2012ZX09103-101-019)

  • A series of novel sorafenib derivatives have been designed and synthesized. The cytotoxic activities of these compounds were tested in three tumor cell lines. Most of the compounds showed potent antiproliferative activity against the tested cell lines with IC50 = 0-20 μmol/L. Some compounds demonstrated competitive antiproliferative activities to sorafenib against all three cancer cell lines. Among them, compound 5g demonstrated significant inhibitory activity against A549, ACHN and MDAMB- 231 cell lines with IC50 values of 1.29, 1.99, 3.11 μmol/L, respectively.
  • 加载中
    1. [1]

      [1] Cancer - Fact sheet N°297, reviewed January 2013. WHO website: http:// www.who.int/mediacentre/factsheets/fs297/en/.

    2. [2]

      [2] R.A. Smith, V. Cokkinides, O.W. Brawley, Cancer screening in the United States 2009: a review of current American Cancer Society guidelines and issues in cancer screening, CA Cancer J. Clin. 59 (2009) 27-41.

    3. [3]

      [3] D.M. Parkin, L.M. Fernandez, Use of statistics to assess the global burden of breast cancer, Breast J. 12 (2006) 570-580.

    4. [4]

      [4] R.C. Flanigan, A.J. Polcari, C.M. Hugen, Prognostic variables and nomograms for renal cell carcinoma, J. Urol. 18 (2011) 20-31.

    5. [5]

      [5] M.N. Noolvi, H.M. Patel, V. Bhardwaj, Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: searching for anticancer agent, Eur. J. Med. Chem. 45 (2010) 4188-4198.

    6. [6]

      [6] H.J. Kim, H.J. Cho, H. Kim, et al., New diarylureas and diarylamides possessing acet(benz)amidophenyl scaffold: design, synthesis, and antiproliferative activity against melanoma cell line, Bioorg. Med. Chem. Lett. 22 (2012) 3269-3273.

    7. [7]

      [7] M.X.Q. Sun, J.Q. Wu, et al., Design, synthesis, and in vitro antitumor evaluation of novel diaryl ureas derivatives, Eur. J. Med. Chem. 45 (2010) 2299-2306.

    8. [8]

      [8] C.R. Zhao, R.Q. Wang, G. Li, et al., Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines, Bioorg. Med. Chem. Lett. 23 (2013) 1989-1992.

    9. [9]

      [9] S. Wilhelm, C. Carter, M. Lynch, et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nat. Rev. Drug Discov. 5 (2006) 835-844.

    10. [10]

      [10] S. Ramurthy, S. Subramanian, M. Aikawa, et al., Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors, J. Med. Chem. 51 (2008) 7049-7052.

    11. [11]

      [11] T. Eisen, T. Ahmad, K.T. Flaherty, et al., Sorafenib in advanced melanoma: a Phase Ⅱ randomized discontinuation trial analysis, Br. J. Cancer 95 (2006) 581-586.

    12. [12]

      [12] R.C. Kan, A.T. Farrell, H. Saber, et al., Sorafenib for the treatment of advanced renal cell carcinoma, Clin. Cancer Res. 12 (2006) 7271-7278.

    13. [13]

      [13] G.M. Keating, A. Santoro, Sorafenib: a review of its use in advanced hepatocellular carcinoma, Drugs 69 (2009) 223-240.

    14. [14]

      [14] A.Rossi,P.Maione,M.L. Ferrara, et al.,Angiogenesis inhibitors andvasculardisrupting agents in non-small cell lung cancer, Curr. Med. Chem. 16 (2009) 3919-3930.

    15. [15]

      [15] V. Roy, E.A. Perez, Biologic therapy of breast cancer: focus on co-inhibition of endocrine and angiogenesis pathways, Breast Cancer Res. Treat. 116 (2009) 31-38.

    16. [16]

      [16] J.W. Yao, Z.P. He, J. Chen, et al., Design, synthesis and biological activities of sorafenib derivatives as antitumor agents, Bioorg. Med. Chem. Lett. 22 (2012) 6549-6553.

    17. [17]

      [17] Y.F. Zhao, Z.J. Liu, X. Zhai, et al., Synthesis and in vitro antitumor activity of novel diaryl urea derivatives, Chin. Chem. Lett. 24 (2013) 386-388.

    18. [18]

      [18] K.F. Chen, W.T. Tai, C.Y. Hsu, et al., Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity, Eur. J. Med. Chem. 55 (2012) 220-227.

    19. [19]

      [19] D. Bankston, J. Dumas, R. Natero, et al., A Scaleable synthesis of BAY 43-9006: a potent raf kinase inhibitor for the treatment of cancer, Org. Process Res. Dev. 6 (2002) 777-781.

  • 加载中
    1. [1]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    7. [7]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    13. [13]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    16. [16]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    19. [19]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    20. [20]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

Metrics
  • PDF Downloads(0)
  • Abstract views(691)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return