Citation: Zai-Gang Luo, Yu Zhao, Chao Ma, Xue-Mei Xu, Xiao-Mei Zhang, Nian-Yu Huang, Hong-Qiu He. Synthesis and anti-integrase evaluation of novel calix[4]arene derivatives containing the triazolyl 1, 3-diketo moiety[J]. Chinese Chemical Letters, ;2014, 25(05): 737-740. doi: 10.1016/j.cclet.2014.03.012 shu

Synthesis and anti-integrase evaluation of novel calix[4]arene derivatives containing the triazolyl 1, 3-diketo moiety

  • Corresponding author: Zai-Gang Luo,  Xue-Mei Xu, 
  • Received Date: 13 December 2013
    Available Online: 20 February 2014

    Fund Project: The authors gratefully thank the National Natural Science Foundation of China (Nos.21102003, 21102084, 81202438) (Nos.21102003, 21102084, 81202438)

  • A series of novel calix[4]arene derivatives incorporating two triazolyl 1,3-diketo subunits in alternate positions at the lower rim were synthesized and screened for HIV integrase inhibition activity. The chemical structures of these compounds were confirmed by means of 1H NMR, 13C NMR, and ESI-MS. Preliminary bioassays indicated that calix[4]arene derivatives proved to be more active than p-tert-butylcalix[4]arene derivatives. In particular, compound 4g presented the most potent integrase strand transfer inhibitory activity with an IC50 value of 6.1 μmol/L.
  • 加载中
    1. [1]

      [1] Y. Pommier, A.A. Johnson, C. Marchand, Integrase inhibitors to treat HIV/AIDS, Nat. Rev. Drug Discov. 4 (2005) 236-248.

    2. [2]

      [2] (a) R. Dayam, N. Neamati, Small-molecule HIV-1 integrase inhibitors: the 2001- 2002 update, Curr. Pharm. Des. 9 (2003) 1789-1802; (b) R. Dayam, J.X. Deng, N. Neamati, HIV-1 integrase inhibitors: 2003-2004 update, Med. Res. Rev. 26 (2006) 271-309; (c) R. Dayam, R. Gundla, L.Q. Al-Mawsawi, N. Neamti, HIV-1 integrase inhibitors: 2005-2006 update, Med. Res. Rev. 28 (2008) 118-154.

    3. [3]

      [3] Y. Goldgur, R. Craigie, G.H. Cohen, et al., Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design, Proc. Natl. Acad. Sci. U.S.A. 96 (1996) 13040-13043.

    4. [4]

      [4] M.L. Barreca, S. Ferro, A. Rao, et al., Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors, J. Med. Chem. 48 (2005) 7084-7088.

    5. [5]

      [5] D.J. Hazuda, N.J. Anthony, R.P. Gomez, et al., A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 11233- 11238.

    6. [6]

      [6] A. Bacchi, M. Biemmi,M. Carcelli, et al., From ligand to complexes. Part 2. Remarks on human immunodeficiency virus type 1 integrase inhibition by β-diketo acid metal complexes, J. Med. Chem. 51 (2008) 7253-7264.

    7. [7]

      [7] Z.G. Luo, X.M. Xu, X.M. Zhang, L.M. Hu, Development of calixarenes, cyclodextrins and fullerenes as new platforms for anti-HIV drug design: an overview, Mini Rev. Med. Chem. 13 (2013) 1160-1165.

    8. [8]

      [8] Â. de Fátima, S.A. Fernandes, A.A. Sabino, Calixarenes as newplatforms for drug design, Curr. Drug Discov. Technol. 6 (2009) 151-170.

    9. [9]

      [9] V.R. Roman, I.B. Vyacheslav, I.K. Vitaly, Calixarenes in bio-medical researches, Curr. Med. Chem. 16 (2009) 1630-1655.

    10. [10]

      [10] F. Perret, A.N. Lazar, A.W. Coleman, Biochemistry of the para-sulfonato-calix[- n]arenas, Chem. Commun. (2006) 2425-2438.

    11. [11]

      [11] E. Da Silva, A.N. Lazar, A.W. Coleman, Biopharmaceutical applications of calixarenes, J. Drug Deliv. Sci. Technol. 14 (2004) 3-20.

    12. [12]

      [12] A. Casnati, F. Sansone, R. Ungaro, Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities, Acc. Chem. Res. 36 (2003) 246- 254.

    13. [13]

      [13] M. Mourer, N. Psychogios, G. Laumond, A.M. Aubertin, J.B. Regnouf-de-Vains, Synthesis and anti-HIV evaluation of water-soluble calixarene-based bithiazolyl podands, Bioorg. Med. Chem. 18 (2010) 36-45.

    14. [14]

      [14] L.K. Tsou, G.E. Dutschman, E.A. Gullen, et al., Discovery of a synthetic dual inhibitor of HIV and HCV infection based on a tetrabutoxy-calix[4]arene scaffold, Bioorg. Med. Chem. Lett. 20 (2010) 2137-2139.

    15. [15]

      [15] V.R. Kamalraj, S. Senthil, P. Kannan, One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers, J. Mol. Struct. 892 (2008) 210-215.

    16. [16]

      [16] M.J. Giffin, H. Heaslet, A. Brik, et al., A copper(I)-catalyzed 1,2,3-triazole azidealkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant, J. Med. Chem. 51 (2008) 6263-6270.

    17. [17]

      [17] R. Alvarez, S. Velazquez, A. San-Felix, et al., 1,2,3-Triazole-[2',5'-bis-O-(tertbutyldimethylsilyl)- β-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole 2",2"-dioxide) (TSAO) analogs: synthesis and anti-HIV-1 activity, J. Med. Chem. 37 (1994) 4185-4194.

    18. [18]

      [18] Z.G. Luo, C.C. Zeng, L.F. Yang, et al., Synthesis of 6-sulfamoyl-4-oxoquinoline-3- carboxylic acid derivatives as integrase antagonists with anti-HIV activity, Chin. Chem. Lett. 20 (2009) 789-792.

    19. [19]

      [19] L.M. Hu, S.L. Zhang, X.Z. He, et al., Design and synthesis of novel β-diketo derivatives as HIV-1 integrase inhibitors, Bioorg. Med. Chem. 20 (2012) 177-182.

    20. [20]

      [20] L.M. Hu, S. Yang, Z.G. Luo, et al., Design, practical synthesis, and biological evaluation of novel 6-(pyrazolylmethyl)-4-quinoline-3-carboxylic acid derivatives as HIV-1 integrase inhibitors, Molecules 17 (2012) 10652-10666.

    21. [21]

      [21] M. Yukito, H. Osamu, N. Yasuyuki, Enantioselective discrimination by cage-type cyclophanes bearing chiral binding sites in aqueous media, J. Am. Chem. Soc. 116 (1994) 2611-2612.

    22. [22]

      [22] J. Guillon, J.M. Leger, P. Sonnet, C. Jarry, M. Robba, Synthesis of cone, partial-cone, and 1,3-alternate 25,27-bis[1-(2-ethyl)hexyl]- and 25,27-bis[1-(2-tert-butoxy) ethyl]calix[4]arene-crown-6 conformers as potential selective cesium extractants, J. Org. Chem. 65 (2000) 8283-8289.

    23. [23]

      [23] Z.G. Luo, X.M. Xu, K. He, Synthesis of α,γ-diketo derivatives containing 1,2,3- triazole ring, Chem. Res. Appl. 25 (2013) 395-398.

    24. [24]

      [24] V.S. Talanov, R.A. Bartsch, Highly selective preparation of conformationally rigidstereoisomeric calix[4]arenes with two carboxymethoxy groups, J. Chem. Soc., Perkin Trans. 1 (1999) 1957-1961.

    25. [25]

      [25] C. Jaime, J. de Mendoza, P. Prados, P. Nieto, C. Sanchez, Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenas, J. Org. Chem. 56 (1991) 3372-3376.

    26. [26]

      [26] Q.H. Chu, L.X. Gao, D.M. Wang, Y.H. Qi, M.X. Ding, Spectroscopy of several β-diketone compounds and their tautomers, Chem. J. Chin. Univ. 21 (2000) 439- 443.

    27. [27]

      [27] H.Q. He, X.H. Ma, B. Liu, W.Z. Chen, C.X. Wang, A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads, Acta Pharmacol. Sin. 29 (2008) 397-404.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    4. [4]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    5. [5]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    8. [8]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    16. [16]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return