Citation: Yu-Bo Jiang, Wen-Sheng Zhang, Hui-Ling Cheng, Yu-Qi Liu, Rui Yang. One-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions[J]. Chinese Chemical Letters, ;2014, 25(05): 779-782. doi: 10.1016/j.cclet.2014.03.011
-
A facile, one-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide has been achieved under microwave-assisted conditions. The reactions can be smoothly completed within a total 10 min through a two-step procedure, including copper-catalyzed coupling of aromatic boronic acids with aqueous ammonia and following propargylation by propargyl bromide.
-
-
[1]
[1] (a) J.M. Holub, K. Kirshenbaum, Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3+2] cycloaddition, Chem. Soc. Rev. 39 (2010) 1325-1337; (b) A. Soules, B. Ameduri, B. Boutevin, G. Calleja, Original fluorinated copolymers achieved by both azide/alkyne "click" reaction and Hay coupling from tetrafluoroethylene telomers, Macromolecules 43 (2010) 4489-4499; (c) Z.W. Chen, D.N. Ye, Y.P. Qian, M. Ye, L.X. Liu, Highly efficient AgBF4-catalyzed synthesis of methyl ketones from terminal alkynes, Tetrahedron 69 (2013) 6116- 6120; (d) S. Bew, G. Hiatt-Gipson, J.A. Lovell, C. Poullain, Mild reaction conditions for the terminal deuteration of alkynes, Org. Lett. 14 (2012) 456-459; (e) Z.M. Dong, Z.B. Ye, Synthesis of hyperbranched poly(phenylacetylene)s containing pendant alkyne groups by one-pot Pd-catalyzed copolymerization of phenylacetylene with diynes, Macromolecules 45 (2012) 5020-5031; (f) N. Onishi, M. Shiotsuki, T. Masuda, N. Sano, F. Sanda, Polymerization of phenylacetylenes using rhodium catalysts coordinated by norbornadiene linked to a phosphino or amino group, Organometallics 32 (2013) 846-853; (g) B.W. Zhou, H. Chen, C.Y. Wang, Mn-catalyzed aromatic C-H alkenylation with terminal alkynes, J. Am. Chem. Soc. 135 (2013) 1264-1267.
-
[2]
[2] (a) A. Zarei, One-pot, efficient, and regioselective syntheses of 1,4-disubstituted 1,2,3-triazoles using aryldiazonium silica sulfates in water, Tetrahedron Lett. 53 (2012) 5176-5179; (b) W.S. Zhang, C.X. Kuang, Q. Yang, Synthesis of phenyl azides bearing (E)-2- halovinyl group, Res. Chem. Intermed. 38 (2012) 37-44; (c) Z.Z. Huang, R.L. Wang, S.R. Sheng, R.Y. Zhou, M.Z. Cai, Preparation of polystyrene- supported vinyl sulfone and its application in the solid-phase organic synthesis of 1-monosubstituted 1,2,3-triazoles, React. Funct. Polym. 73 (2013) 224-227; (d) Q. Yang, Y.B. Jiang, C.X. Kuang, Facile one-pot synthesis of monosubstituted 1- aryl-1H-1,2,3-triazoles from arylboronic acids and prop-2-ynoic acid (=propiolic acid) or calcium acetylide (=calcium carbide) as acetylene source, Helv. Chim. Acta 95 (2012) 448-454; (e) M. Xu, C.X. Kuang, Z. Wang, Q. Yang, Y.B. Jiang, A novel approach to 1- monosubstituted 1,2,3-triazoles by a click cycloaddition/decarboxylation process, Synthesis (2011) 223-228; (f) Y.B. Jiang, C.X. Kuang, Q. Yang, Facile and quick synthesis of 1-monosubstituted aryl 1,2,3-triazoles: a copper-free [3+2] cycloaddition, Tetrahedron 67 (2011) 289-292; (g) L. Wu, Y. Xie, Z. Chen, Y. Niu, Y. Liang, A convenient synthesis of 1-substituted 1,2,3-triazoles via CuI/Et3N catalyzed ‘click chemistry' from azides and acetylene gas, Synlett (2009) 1453-1456.
-
[3]
[3] (a) Y.Y. Liu, C.P. Wang, X.B. Wang, J.P. Wan, Enaminone ligand-assisted homoand cross-coupling of terminal alkynes under mild conditions, Tetrahedron Lett. 54 (2013) 3953-3955; (b) D.H. Bai, C.J. Li, J. Li, X.S. Jia, New progress of acetylene-coupling reactions, Chin. J. Org. Chem. 32 (2012) 994-1009; (c) X.J. Niu, C.J. Li, J. Li, X.S. Jia, Importance of bases on the copper-catalyzed oxidative homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes, Tetrahedron Lett. 53 (2012) 5559-5561; (d) L.L. Li, C.Y. Nan, Q. Peng, Y.D. Li, Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene, Chem. Eur. J. 18 (2012) 10491-10496; (e) Z.Q. Weng, H.F. Li, W.M. He, et al., Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent, Tetrahedron 68 (2012) 2527-2531; (f) S.S. Patil, R.P. Jadhav, S.V. Patil, V.D. Bobade, Ligand and solvent-free iron catalyzed oxidative alkynylation of azoles with terminal alkynes, Tetrahedron Lett. 52 (2011) 5617-5619; (g) X.P. Nie, S.L. Liu, Y. Zong, P.P. Sun, J.C. Bao, Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes, J. Organomet. Chem. 696 (2011) 1570-1573; (h) H. Xu, S.J. Gu, W.Z. Chen, D.C. Li, J.M. Dou, TBAF-mediated reactions of 1,1- dibromo-1-alkenes with thiols and amines and regioselective synthesis of 1,2- heterodisubstituted alkenes, J. Org. Chem. 76 (2011) 2448-2458; (i) B. Movassagh, M. Navidi, A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes, Chin. Chem. Lett. 23 (2012) 1035-1038; (j) Q.F. Zhou, X.P. Chu, S. Zhao, T. Lu, W.F. Tang, BF3·Et2O promoted conjugate addition of ethanethiol to electron-deficient alkynes, Chin. Chem. Lett. 23 (2012) 639-642; (k) M. Bakherad, A. Amin, A. Keivanloo, B. Bahramian, M. Raessi, Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions, Chin. Chem. Lett. 21 (2010) 656-660.
-
[4]
[4] E. Quesada, S.A. Raw, M. Reid, E. Roman, R.J.K. Taylor, One-pot conversion of activated alcohols into 1,1-dibromoalkenes and terminal alkynes using tandem oxidation processes with manganese dioxide, Tetrahedron 62 (2006) 6673-6680.
-
[5]
[5] R. Aitken, S. Seth, Convenient 2-step conversion of acid-chlorides to terminal alkynes, Synlett (1990) 211.
-
[6]
[6] H.D. Dickson, S.C. Smith, K.W. Hinkle, A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes, Tetrahedron Lett. 45 (2004) 5597-5599.
-
[7]
[7] (a) X.Z. Cheng, J. Jia, C.X. Kuang, Convenient synthesis of terminal alkynes from anti-3-aryl-2,3-dibromopropanoic acids using a K2CO3/DMSO system, Chin. J. Chem. 29 (2011) 2350-2354; (b) S. Shenawi-Khalil, S.U. Sonavane, Y. Sasson, Synthesis of acetylenes via dehydrobromination using solid anhydrous potassium phosphate as the base under phase-transfer conditions, Tetrahedron Lett. 53 (2012) 2295-2297; (c) M. Zhao, C.X. Kuang, Q. Yang, X.Z. Cheng, Cs2CO3-mediated synthesis of terminal alkynes from 1,1-dibromo-1-alkenes, Tetrahedron Lett. 52 (2011) 992-994.
-
[8]
[8] (a) K. Park, G. Bae, J. Moon, et al., Synthesis of symmetrical and unsymmetrical diarylalkynes from propiolic acid using palladium-catalyzed decarboxylative coupling, J. Org. Chem. 75 (2010) 6244-6251; (b) K. Park, T. Palani, A. Pyo, S. Lee, Synthesis of aryl alkynyl carboxylic acids and aryl alrynes from propiolic acid and aryl halides by site selective coupling and decarboxylation, Tetrahedron Lett. 53 (2012) 733-737.
-
[9]
[9] J. Li, P.C. Huang, A rapid and efficient synthetic route to terminal aryl-acetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl- 2-methyl-3-butyn-2-ols, Beilstein J. Org. Chem. 7 (2011) 426-431.
-
[10]
[10] H.H. Rao, H. Fui, Y.Y. Jiang, Y.F. Zhao, Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature, Angew. Chem. Int. Ed. 48 (2009) 1114-1116.
-
[11]
[11] M.A. Holman, N.M. Williamson, A.D. Ward, Preparation and cyclization of some N- (2,2-dimethylpropargyl) homo- and heteroaromatic amines and the synthesis of some pyrido[2,3-d]pyrimidines, Aust. J. Chem. 58 (2005) 368-374.
-
[12]
[12] K.C. Majumdar, R.K. Nandi, S. Ganai, A. Taher, Regioselective synthesis of annulated quinoline and pyridine derivatives by silver-catalyzed 6-endo-dig cycloisomerization, Synlett 42 (2011) 116-120.
-
[1]
-
-
[1]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[2]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[3]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[4]
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
-
[5]
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
-
[6]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[7]
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
-
[8]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[9]
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
-
[10]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[11]
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
-
[12]
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
-
[13]
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
-
[14]
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
-
[15]
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
-
[16]
Chunqing Ou , Meijia Xiao , Xinyue Zheng , Xianzhou Huang , Suleixin Yang , Yingying Leng , Xiaowei Liu , Xiuqi Liang , Linjiang Song , Yanjie You , Shaohua Yao , Changyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275
-
[17]
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
-
[18]
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
-
[19]
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
-
[20]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(646)
- HTML views(32)