Citation: Satish Gaddam, Harshavardhan Reddy Kasireddy, Karnakar Konkala, Ramesh Katla, Nageswar Yadavalli Venkata Durga. Synthesis of N-substituted-2-aminobenzothiazoles using nano copper oxide as a recyclable catalyst under ligand-free conditions, in reusable PEG-400 medium[J]. Chinese Chemical Letters, ;2014, 25(05): 732-736. doi: 10.1016/j.cclet.2014.02.003
-
A simple and practical method for the synthesis of N-substituted-2-aminobenzothiazoles via a crosscoupling reaction of 2-iodo anilines with isothiocyanates is envisaged using nano copper oxide as a recyclable catalyst and Cs2CO3 as a base in PEG-400, as a bio-degradable, reusable, inexpensive and nontoxic reaction medium, under ligand-free conditions. The present tandem process underlines environmental acceptability to access a wide range of N-substituted-2-aminobenzothiazoles in good to excellent yields.
-
-
[1]
[1] A.C. Gyorkos, C.P. Corrette, S.Y. Cho, et al., Efficient conversion of substituted aryl thioureas to 2-aminobenzothiazoles using benzyltrimethylammonium tribromide, WO Patent 44 (2005) 793.
-
[2]
[2] A.D. Jordan, C. Luo, A.B. Reitz, A new three-carbon synthon for efficient synthesis of benzannelated and 1-(2-arylethenyl) heterocycles, J. Org. Chem. 68 (2003) 8693-8696.
-
[3]
[3] A.R. Katritzky, D.O. Tymoshenko, D. Monteux, et al., Efficient conversion of substituted aryl thioureas to 2-aminobenzothiazoles using benzyltrimethylammonium tribromide, J. Org. Chem. 65 (2000) 8059-8062.
-
[4]
[4] A.R. Katritzky, D.O. Tymoshenko, D. Monteux, et al., A new three-carbon synthon for efficient synthesis of benzannelated and 1-(2-arylethenyl) heterocycles, J. Org. Chem. 65 (2000) 8059-8062.
-
[5]
[5] I.ĆAleta, M. Kralj, M. Marjanovic, et al., Novel cyano- and amidinobenzothiazole derivatives: synthesis, antitumor evaluation, and X-ray and quantitative structure-activity relationship (QSAR) analysis, J. Med. Chem. 52 (2009) 1744-1756.
-
[6]
[6] H. Suter, H. Zutter, Studien iiber benzthiazole als eventuelle orale antidiabetica, Helv. Chim. Acta 50 (1967) 1084-1086.
-
[7]
[7] V.G. Shirke, A.S. Bobade, R.P. Bhamaria, B.G. Khadse, S.R. Sengupta, Synthesis and antitubercular activity of some new 2-(substituted arylamino)-5,6-disubstituted/ 6-substituted benzothiazoles, Drugs (India) 27 (1990) 350-353.
-
[8]
[8] S.J. Hays, M.J. Rice, D.F. Ortwine, et al., Substituted 2-benzothiazolamines as sodium flux inhibitors: quantitative structure-activity relationships and anticonvulsant activity, J. Pharm. Sci. 83 (1994) 1425-1432.
-
[9]
[9] W. Aelterman, Y. Lang, B. Willemsens, et al., Conversion of the laboratory synthetic route of the N-aryl-2-benzothiazolamine R116010 to a manufacturing method, Org. Process Res. Dev. 5 (2001) 467-471.
-
[10]
[10] Z. Li, S.X. Xiao, G.Q. Tian, et al., Microwave promoted environmentally benign synthesis of 2-aminobenzothiazoles and their urea derivatives, Phosphorus Sulfur Silicon 183 (2008) 1124-1126.
-
[11]
[11] T. Suzuki, S. Igari, A. Hirasawa, Identification of G protein-coupled receptor 120- selective agonists derived from PPARγ agonists, J. Med. Chem. 51 (2008) 7640- 7644.
-
[12]
[12] H.F. Motiwala, R. Kumar, A.K. Chakraborti, Microwave-accelerated solvent- and catalyst-free synthesis of 4-aminoaryl/alkyl-7-chloroquinolines and 2-aminoaryl/ alkylbenzothiazoles, Aust. J. Chem. 60 (2007) 369-374.
-
[13]
[13] F. Delmas, A. Avellaneda, C. Di Giorgio, et al., Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives, Eur. J. Med. Chem. 39 (2004) 685-690.
-
[14]
[14] J. Das, R.V. Moquin, J. Lin, et al., Discovery of 2-amino-heteroaryl-benzothiazole- 6-anilides as potent p56lck inhibitors, Bio. Med. Chem. Lett. 13 (2003) 2587- 2590.
-
[15]
[15] J.M. Sprague, A.H. Land, in: R.C. Elderfield (Ed.), The Chemistry of Heterocyclic Compounds, vol. 5, Wiley, New York, 1957, p. 484.
-
[16]
[16] D. Fajkusova, P. Pazdera, Unexpected formation of benzothiazoles in the synthesis of new heterocycles: benzo-1,2,4-dithiazines, Synthesis 8 (2008) 1297-1305.
-
[17]
[17] L.L. Joyce, G. Evinda, R.A. Batey, Copper- and palladium-catalyzed intramolecular C-S bond formation: a convenient synthesis of 2-aminobenzothiazoles, Chem. Commun. (2004) 446-447.
-
[18]
[18] J.W. Qiu, X.G. Zhang, R.Y. Tang, P. Zhong, J.H. Lia, Iron-catalyzed tandem reactions of 2-halobenzenamines with isothiocyanates leading to 2-aminobenzothiazoles, Adv. Synth. Catal. 351 (2009) 2319-2323.
-
[19]
[19] W. Zhag, Y. Yue, D. Yu, et al., 1,10-Phenanthroline-catalyzed tandem reaction of 2- iodoanilines with isothiocyanates in water, Adv. Synth. Catal. 354 (2012) 2283- 2287.
-
[20]
[20] D. Ma, X. Lu, L. Shi, et al., Domino condensation/S-arylation/heterocyclization reactions: copper-catalyzed three-component synthesis of 2-N-substituted benzothiazoles, Angew. Chem. Int. Ed. 50 (2011) 1118-1128.
-
[21]
[21] R. Xiao, W. Hao, J. Ai, M.Z. Cai, A practical synthesis of 2-aminobenzothiazoles via the tandem reactions of 2-haloanilines with isothiocyanates catalyzed by immobilization of copper in MCM-41, J. Organomet. Chem. 705 (2012) 44-50.
-
[22]
[22] J. Yang, P. Li, L. Wang, Merrifield resin supported phenanthroline Cu(I): a highly efficient and recyclable catalyst for the synthesis of 2-aminobenzothiazoles via the reaction of 2-haloanilines with isothiocyanates, Tetrahedron 67 (2011) 5543- 5549.
-
[23]
[23] K. Swapna, S.N. Murthy, Y.V.D. Nageswar, Copper iodide as a recyclable catalyst for buchwald N-arylation, Eur. J. Org. Chem. (2010) 6678-6682.
-
[24]
[24] K. Swapna, S.N. Murthy, Y.V.D. Nageswar, Recyclable heterogeneous copper oxide on alumina catalyzed coupling of phenols and alcohols with aryl halides under ligand-free conditions, Org. Biomol. Chem. 9 (2011) 5978- 5988.
-
[25]
[25] S.N. Murthy, Y.V.D. Nageswar, O-iodoxybenzoic acid (IBX): a versatile reagent for the synthesis of N-substituted pyrroles mediated by b-cyclodextrin in water, Tetrahedron Lett. 52 (2011) 4481-4484.
-
[26]
[26] K.H.V. Reddy, V.P. Reddy, J. Shankar, et al., Copper oxide nanoparticles catalyzed synthesis of aryl sulfides via cascade reaction of aryl halides with thiourea, Tetrahedron Lett. 52 (2011) 2679-2682.
-
[27]
[27] K. Harsha Vardhan Reddy, G. Satish, V. Prakash Reddy, B.S.P. Anil Kumar, Y.V.D. Nageswar, Recyclable Ru/C catalyzed oxidative cyanation of tertiary amines with TBHP, RSC Adv. 2 (2012) 11084-11088.
-
[28]
[28] K.H.V. Reddy, V.P. Reddy, A.A. Kumar, G. Kranthi, Y.V.D. Nageswar, Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions, Beilstein J. Org. Chem. 7 (2011) 886-891.
-
[29]
[29] K. Swapna, S.N. Murthy, Y.V.D. Nageswar, Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions, Org. Biomol. Chem. 9 (2011) 5989-5996.
-
[30]
[30] K. Ramesh, S.N. Murthy, K. Karnakar, et al., A novel bioglycerol-based recyclable carbon catalyst for an efficient one-pot synthesis of highly substituted imidazoles, Tetrahedron Lett. 53 (2012) 1126-1129.
-
[31]
[31] K. Ramesh, S.N. Murthy, Y.V.D. Nageswar, Synthesis of N-substituted pyrroles under catalyst- and solvent-free conditions, Synth. Commun. 42 (2012) 2471- 2477.
-
[32]
[32] K.H.V. Reddy, G. Satish, K. Ramesh, K. Karnakar, Y.V.D. Nageswar, An efficient synthesis of N-substituted indoles from indoline/indoline carboxylic acid via aromatization followed by C-N cross-coupling reaction by using nano copper oxide as a recyclable catalyst, Tetrahedron Lett. 53 (2012) 3061-3065.
-
[33]
[33] K.H.V. Reddy, G. Satish, K. Ramesh, K. Karnakar, Y.V.D. Nageswar, Magnetically separable CuFe2O4 nanoparticle catalyzed C-Se cross coupling in reusable PEG medium, Chem. Lett. 41 (2012) 585-587.
-
[34]
[34] G. Satish, K.H.V. Reddy, K. Ramesh, K. Karnakar, Y.V.D. Nageswar, Synthesis of 2- N-substituted benzothiazoles via domino condensation-hetero cyclization process, mediated by copper oxide nanoparticles under ligand-free conditions, Tetrahedron Lett. 53 (2012), 2521-2521.
-
[35]
[35] D. Srimani, A. Bej, A. Sarkar, Palladium nanoparticle catalyzed Hiyama coupling reaction of benzyl halides, J. Org. Chem. 75 (2010) 4296-4299.
-
[36]
[36] V.V. Namboodiri, R.S. Varma, Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG), Green Chem. 3 (2001) 146- 149.
-
[37]
[37] Z. Hou, N. Thetssen, W. Leitner, Palladium nanoparticles stabilised on PEGmodified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem. 9 (2007) 127-132.
-
[38]
[38] P.C. Andrews, A.C. Peatt, C.L. Raston, Indium metal mediated synthesis of homoallylic amines in poly(propylene)glycol (PPG), Green Chem. 6 (2004) 119-124.
-
[39]
[39] K.H. Lam, L. Xu, L. Feng, et al., Highly enantioselective iridium-catalyzed hydrogenation of quinoline derivatives using chiral phosphinite H8-BINAPO, Adv. Synth. Catal. 347 (2005) 1755-1759.
-
[40]
[40] W.B. Wang, S.M. Lu, P.Y. Yang, X.W. Han, Y.G. Zhou, Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines, J. Am. Chem. Soc. 125 (2003) 10536-10540.
-
[41]
[41] G. Shen, X. Lv, W. Bao, Synthesis of N-substituted-2-aminobenzothiazoles by ligand-free copper(I)-catalyzed cross-coupling reaction of 2-haloanilines with isothiocyanates, Eur. J. Org. Chem. (2009) 5897-5901.
-
[1]
-
-
[1]
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755
-
[2]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[3]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[4]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[5]
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
-
[6]
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
-
[7]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[8]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[9]
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
-
[10]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[11]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[12]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[13]
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
-
[14]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[15]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[16]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[17]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[18]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[19]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[20]
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(683)
- HTML views(10)