Citation: Fei Tang, Yi Chen, Jiu-Ming He, Zhi-Gang Luo, Zeper Abliz, Xiao-Hao Wang. Design and performance of air flow-assisted ionization imaging mass spectrometry system[J]. Chinese Chemical Letters, ;2014, 25(05): 687-692. doi: 10.1016/j.cclet.2014.01.046
-
The imaging mass spectrometry (IMS) technology has experienced a rapid development in recent years. A new IMS technology which is based on air flowassisted ionization (AFAI) was reported. It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity. The AFAI in DESI mode was used as the ion source in this paper. The new IMS method is named AFADESI-IMS. The adoption of assisted air flow makes the sample pretreatment easy and convenient. An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system. For data processing, a program based on MATLAB with the function of numerical analysis was developed. A theoretical imaging resolution of a few hundred microns can be achieved. The composite AFAI-IMS images of different target analytes were imaged with high sensitivity. A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement. The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage. The method has enormous potentials in the MS imaging of large and complicated samples.
-
-
[1]
[1] L.A. McDonnell, R.M.A. Heeren, Imaging mass spectrometry, Mass Spectrom. Rev. 26 (2007) 606-643.
-
[2]
[2] S. Shimma, M. Setou, Review of imaging mass spectrometry, J. Mass Spectrom. Soc. Jpn. 53 (2005) 230-238.
-
[3]
[3] D.S. Cornett, M.L. Reyzer, P. Chaurand, R.M. Caprioli, MALDI imaging mass spectrometry: molecular snapshots of biochemical systems, Nat. Methods 4 (2007) 828-833.
-
[4]
[4] J.M. Wiseman, D.R. Ifa, A. Venter, R.G. Cooks, Ambient molecular imaging by desorption electrospray ionization mass spectrometry, Nat. Protoc. 3 (2008) 517- 524.
-
[5]
[5] R. van de Plas, B. De Moor, E. Waelkens, Imaging mass spectrometry based exploration of biochemical tissue composition using peak intensity weighted PCA, in: 2007 IEEE/NIH Life Science Systems and Applications Workshop, IEEE, Bethesda, MD, (2007), pp. 209-212.
-
[6]
[6] S.L. Luxembourg, R.M.A. Heeren, Fragmentation at and above surfaces in SIMS: effects of biomolecular yield enhancing surface modifications, Int. J. Mass Spectrom. 253 (2006) 181-192.
-
[7]
[7] A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends, John Wiley and Sons Publishers, New York, 1987.
-
[8]
[8] S.A. Schwartz, M.L. Reyzer, R.M. Caprioli, Direct tissue analysis using matrixassisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation, J. Mass Spectrom. 38 (2003) 699-708.
-
[9]
[9] R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 23 (1997) 4751-4760.
-
[10]
[10] Z. Takáts, J.M. Wiseman, B. Gologan, R.G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science 306 (2004) 471-473.
-
[11]
[11] R.I. Demian, M.W. Justin, Q. Song, R.G. Cooks, Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI), Int. J. Mass Spectrom. 259 (2007) 8-15.
-
[12]
[12] G.A. Harris, L. Nyadong, F.M. Fernandez, Recent developments in ambient ionization techniques for analytical mass spectrometry, Analyst 133 (2008) 1297-1301.
-
[13]
[13] D.R. Ifa, L.M. Gumaelius, L.S. Eberlin, N.E. Manicke, R.G. Cooks, Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry, Analyst 132 (2007) 461-467.
-
[14]
[14] K. Yanagisawa, Y. Shyr, B.J. Xu, et al., Proteomic patterns of tumour subsets in nonsmall- cell lung cancer, The Lancet 362 (2003) 433-439.
-
[15]
[15] M.L. Reyzer, P. Chaurand, P.M. Angel, R.M. Caprioli, Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry, Methods Mol. Biol. 656 (2010) 285-301.
-
[16]
[16] P. Chaurand, M. Stoeckli, R.M. Caprioli, Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry, Anal. Chem. 71 (1999) 5263-5270.
-
[17]
[17] P. Chaurand, S.A. Schwartz, D. Billheimer, et al., Integrating histology and imaging mass spectrometry, Anal. Chem. 76 (2004) 1145-1155.
-
[18]
[18] H.R. Aerni, D.S. Cornett, R.M. Caprioli, Automated acoustic matrix deposition for MALDI sample preparation, Anal. Chem. 78 (2006) 827-834.
-
[19]
[19] J.M. He, F. Tang, Z.G. Luo, et al., Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application, Rapid Commun. Mass Spectrom. 25 (2011) 843-850.
-
[20]
[20] E.H. Seeley, S.R. Oppenheimer, D. Mi, P. Chaurand, R.M. Caprioli, Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections, J. Am. Soc. Mass Spectrom. 19 (2008) 1069-1077.
-
[21]
[21] J.M. Wiseman, D.R. Ifa, Y. Zhu, et al., Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 18120-18125.
-
[22]
[22] C.S. Wu, Z.X. Jia, B.M. Ning, J.L. Zhang, S. Wu, Separation and identification of moxifloxacin impurities in drug substance by high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform ion cyclotron resonance mass spectrometry, Chin. Chem. Lett. 23 (2012) 1185-1188.
-
[23]
[23] Z.G. Luo, J.M. He, Y.J. Chen, et al., Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions, Anal. Chem. 85 (2013) 2977-2982.
-
[24]
[24] V. Kertesz, G.J. van Berkel, Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform, J. Mass Spectrom. 45 (2010) 252-260.
-
[25]
[25] S. Jiang, Y.S. Li, B. Sun, Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method, Chin. Chem. Lett. 24 (2013) 311-314.
-
[26]
[26] T. Schramm, A. Hester, I. Klinkert, et al., imzML—A common data format for the flexible exchange and processing of mass spectrometry imaging data, J. Proteomics 75 (2012) 5106-5110.
-
[27]
[27] R. van de Plas, K. Pelckmans, B.D. Moor, E. Waelkens, Spatial querying of imaging mass spectrometry data: a nonnegative least squares approach, in: Benelux Bioinformatics Conference, 2007.
-
[28]
[28] S.K. Shahidi, M. Andersson, J.L. Herman, T.A. Gillespie, R.M. Caprioli, Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry, Anal. Chem. 78 (2006) 6448-6456.
-
[1]
-
-
[1]
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
-
[2]
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
-
[3]
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
-
[4]
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
-
[5]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[6]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[7]
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
-
[8]
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
-
[9]
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
-
[10]
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
-
[11]
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
-
[12]
Miao-Miao Chen , Min-Ling Zhang , Xiao Song , Jun Jiang , Xiaoqian Tang , Qi Zhang , Xiuhua Zhang , Peiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785
-
[13]
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
-
[14]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[15]
Zhihui Zhang , Ru Sun , Chong Bian , Hongbo Wang , Zhen Zhao , Panpan Lv , Jianzhong Lu , Haixin Zhang , Hulie Zeng , Yuanyuan Chen , Zhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784
-
[16]
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
-
[17]
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
-
[18]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[19]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[20]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(625)
- HTML views(39)