Citation: Hong-Fei Zhang, Zheng-Qing Ye, Gang Zhao. Enantioselective synthesis of functionalized fluorinated dihydropyrano [2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane-thiourea[J]. Chinese Chemical Letters, ;2014, 25(4): 535-540. doi: 10.1016/j.cclet.2014.01.034 shu

Enantioselective synthesis of functionalized fluorinated dihydropyrano [2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane-thiourea

  • Corresponding author: Gang Zhao, 
  • Received Date: 29 November 2013
    Available Online: 14 January 2014

    Fund Project: This work was supported by National Basic Research Program of China (973 Program, No. 2010CB833200) (973 Program, No. 2010CB833200) the National Natural Science Foundation of China (Nos. 21032006, 203900502, 20532040, 21290180) (Nos. 21032006, 203900502, 20532040, 21290180)

  • Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles has been achieved via a diaminocyclohexane-thiourea catalyzed cascade Michael addition and Thorpe-Ziegler type cyclization in high yields (up to 98%) with moderate to good enantioselectivity (up to 90% ee).
  • 加载中
    1. [1]

      [1] (a) K. Mikami, Y. Itoh, Y.M. Yamamaka, Fluorinated carbonyl and olefinic compounds: basic character and asymmetric catalytic reactions, Chem. Rev. 104 (2004) 1-16; (b) B.E. Smart, Fluorine substituent effects (on bioactivity), J. Fluor. Chem. 109 (2001) 3-11; (c) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications, Wiley-VCH, Weinheim, 2004; (d) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Oxford, 2009.

    2. [2]

      [2] (a) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320-330; (b) K. Müller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886; (c) W.K. Hagmann, The many roles for fluorine in medicinal chemistry, J. Med. Chem. 51 (2008) 4359-4369.

    3. [3]

      [3] (a) V.A. Brunet, D. O'Hagan, Catalytic asymmetric fluorination comes of age, Angew. Chem. Int. Ed. 47 (2008) 1179-1182; (b) R. Smits, C.D. Cadicamo, K. Burger, B. Koksch, Synthetic strategies to a-trifluoromethyl and a-difluoromethyl substituted α-amino acids, Chem. Soc. Rev. 37 (2008) 1727-1739; (c) G.K.S. Prakash, P. Beier, Construction of asymmetric fluorinated carbon centers, Angew. Chem. Int. Ed. 45 (2006) 2172-2174; (d) P.M. Pihko, Enantioselective-fluorination of carbonyl compounds: organocatalysis or metal catalysis? Angew. Chem. Int. Ed. 45 (2006) 544-547; (e) M. Oestreich, Strategies for catalytic asymmetric electrophilic halogenation of carbonyl compounds, Angew. Chem. Int. Ed. 44 (2005) 2324-2327; (f) H. Ibrahim, A. Togni, Enantioselective halogenation reactions, Chem. Commun. (2004) 1147-1155; (g) J.A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation and perfluoroalkylation, Chem Rev. 104 (2004) 6119-6146.

    4. [4]

      [4] (a) S.C. Kuo, L.J. Huang, H. Nakamura, Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[ 2,3-c]pyrazol-6-one derivatives, J. Med. Chem. 27 (1984) 539-544; (b) J.L. Wang, D. Liu, Z.J. Zhang, et al., Structure-based discovery of an organic compound that binds bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. USA 97 (2000) 7124-7129; (c) N. Foloppe, L.M. Fisher, R. Howes, et al., Identification of chemically diverse chk1 inhibitors by receptor-based virtual screening, Bioorg. Med. Chem. 14 (2006) 4792-4802.

    5. [5]

      [5] (a) H. Junek, H. Aigner, Synthesen mit Nitrilen, XXXV. Reaktionen von tetracyanäthylen mit heterocyclen, Chem. Ber. 106 (1973) 914-921; (b) J.F. Zhou, S.J. Tu, H.Q. Zhu, S.J. Zhi, A facile one pot synthesis of pyrano[2,3- c]pyrazole derivatives under microwave irradiation, Synth. Commun. 32 (2002) 3363-3366; (c) A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, et al., Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Singlestage synthesis of 10-substituted 6-amino-spiro-4-(piperidine-40)-2H,4H-pyrano[ 2,3-c]pyrazole-5-carbonitriles, Tetrahedron 59 (2003) 7491-7496; (d) D.Q. Shi, J. Mou, Q.Y. Zhuang, et al., Three-component one-pot synthesis of 1, 4-dihydropyrano[2,3-c]pyrazole derivatives in aqueous Media, Synth. Commun. 34 (2004) 4557-4563; (e) T.S. Jin, A.Q. Wang, Z.L. Cheng, J.S. Zhang, T.S. Li, A clean and simple synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole in water, Synth. Commun. 35 (2005) 137-143; (f) Z.J. Ren, W.G. Cao, W.Q. Tong, Z. Jin, Solvent-free, one-pot synthesis of pyrano[2,3-c]pyrazole derivatives in the presence of KF 2H2O by Grinding, Synth. Commun. 35 (2005) 2509-2513; (g) Y.Q. Peng, G.H. Song, R.L. Dou, Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8 (2006) 573-575; (h) F. Lehmann, M. Holm, S. Laufer, Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles, J. Comb. Chem. 10 (2008) 364-367; (i) H. Sheibani, M. Babaie, Three-component reaction to form 1,4-dihydropyrano[ 2,3-c]pyrazol-5-yl cyanides, Synth. Commun. 40 (2009) 257-265; (j) A.S. Nagarajan, B.S.R. Reddy, Synthesis of substituted pyranopyrazoles under neat conditions via a multicomponent reaction, Synlett (2009) 2002-2004; (k) Y.M. Litvinov, A.A. Shestopalov, L.A. Rodinovskaya, A.M. Shestopalov, New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol- 5-carbonitriles and one-pot synthesis of 60-aminospiro[(3H)-indol-3,40-pyrano[ 2,3-c]pyrazol]-(1H)-2-on-50-carbonitriles, J. Comb. Chem. 11 (2009) 914-919; (l) R. Balaskar, S. Gavade, D. Mane, Greener approach towards the facile synthesis of 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanide derivatives at room temperature, Chin. Chem. Lett. 21 (2010) 1175-1179; (m) H. Mecadon, M.R. Rohman, I. Kharbangar, et al., l-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3- methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water, Tetrahedron Lett. 52 (2011) 3228-3231.

    6. [6]

      [6] (a) S. Gogoi, C.G. Zhao, Organocatalyzed enantioselective synthesis of 6-amino-5- cyanodihydropyrano[2,3-c]pyrazoles, Tetrahedron Lett. 50 (2009) 2252-2255; (b) S. Muramulla, C.G. Zhao, A new catalytic mode of the modularly designed organocatalysts (mdos): enantioselective synthesis of dihydropyrano[2,3-c]pyrazoles, Tetrahedron Lett. 52 (2011) 3905-3908.

    7. [7]

      [7] H.F. Zohdi, A.H.H. Elghandour, N.M. Rateb, M.M.M. Sallam, Reactions with 5-trifluoromethyl-2, 4-dihydropyrazol-3-one derivatives: a new route for the synthesis of fluorinated polyfunctionally substituted pyrazole and pyrano[2,3- c]pyrazole derivates, J. Chem. Res. 12 (1992) 3015-3025.

    8. [8]

      [8] (a) X.S. Wang, C.W. Zheng, S.L. Zhao, et al., Organocatalyzed Friedel-craft-type reaction of 2-naphthol with b,g-unsaturated a-keto ester to form novel optically active naphthopyran derivatives, Tetrahedron: Asymmetry 19 (2008) 2699-2704; (b) Y.Q.Yang, G.Zhao, OrganocatalyzedhighlyenantioselectiveMichael additions of malonates to enones by using novel primary-secondary diamine catalysts, Chem. Eur. J. 14 (2008) 10888-10891; (c) S.L. Zhao, C.W. Zheng,G. Zhao, Enantioselective synthesis of multifunctionalized 4H-pyran derivatives using bifunctional thiourea-tertiary amine catalysts, Tetrahedron: Asymmetry 20 (2009) 1046-1051; (d) C.W. Zheng, Y.W. Li, H.F.Wang, et al., Highly efficient asymmetric epoxidation of electron-deficient, b-enones and related applications to organic synthesism, Adv. Synth. Catal. 351 (2009) 1685-1691; (e) P. Li, Z. Chai, S.L. Zhao, et al., Highly enantio- and diastereoselective synthesis of a-trifluoromethyldihydropyrans using a novel bifunctional piperazine-thiourea catalyst, Chem. Commun. (2009) 7369-7371; (f) H.F. Cui, Y.Q. Yang, Z. Chai, et al., Enantioselective synthesis of functionalized fluorinated cyclohexenones via Robinson annulation catalyzed by primary- secondary diamines, J. Org. Chem. 75 (2010) 117-122; (g) H.F. Cui, P. Li, X.W.Wang, et al., Highly enantioselective synthesis ofa-fluoro-anitro esters via organocatalyzed asymmetric Michael addition, Tetrahedron 67 (2011) 312-317; (h) H.F. Cui, P. Li, X.W. Wang, S.Z. Zhu, G. Zhao, Asymmetric Michael addition of afluoro- a-phenylsulfonyl ketones to nitroolefins catalyzed by phenylalanine-based bifunctional thioureas, J. Fluor. Chem. 133 (2012) 120-126.

    9. [9]

      [9] (a) T. Okino, Y. Hoashi, Y. Takemoto, Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts, J. Am. Chem. Soc. 125 (2003) 12672-12673; (b) T. Okino, Y. Hoashi, T. Furukawa, X.N. Xu, Y. Takemoto, Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea, J. Am. Chem. Soc. 127 (2005) 119-125; (c) T. Inokuma, Y. Hoashi, Y. Takemoto, Thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to α,β-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding, J. Am. Chem. Soc. 128 (2006) 9413-9419; (d) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto, Enantioselective aza-Henry reaction catalyzed by a bifunctional organocatalyst, Org. Lett. 6 (2004) 625-627; (e) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe, Y. Takemoto, Enantioselective tandem Michael reaction to nitroalkene catalyzed by bifunctional thiourea: total synthesis of ( )-epibatidine, Tetrahedron 62 (2006) 365-374; (f) H.J. Yang, F.J. Xiong, J. Li, F.E. Chen, A family of novel bifunctional organocatalysts: highly enantioselective alcoholysis of meso cyclic anhydrides and its application for synthesis of the key intermediate of P2X7 receptor antagonists, Chin. Chem. Lett. 24 (2013) 553-558.

    10. [10]

      [10] (a) E. Maalej, F. Chabchoub, A. Samadi, et al., Synthesis, biological assessment and molecular modeling of 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[ 2,3-b]quinolin-13-amines, Bioorg. Med. Chem. Lett. 21 (2011) 2384-2388; (b) N.P. Selvam, T.H. Babu, P.T. Perumal, A simple and convenient approach to the Friedländer synthesis of pyrano[2,3-b]pyridines, Tetrahedron 65 (2009) 8524-8530; (c) J.R. Li, L.J. Zhang, D.X. Shi, et al., A new conversion of Friedla¨ndler reaction and the structure of its products, Synlett (2008) 233-236.

    11. [11]

      [11] X-ray crystal: Triclinic, space group: P-1, Final R indices [I>2sigma(I)]: R1 = 0.0537, wR2 = 0.1763; unit cell dimensions: a = 7.6593(12) Å, b = 13.191(2) Å, c = 13.678 (2)Å, α = 67.787(2)8, β = 82.977(3)8, γ = 86.498(2)8; volume: 1269.7(3) Å3; crystal size: 0.39 mm×0.30 mm×0.28 mm; T = 173(2) K; Z, calculated density: 2, 1.416 mg/m3; reflections collected/unique: 9139/5448[R(int) = 0.0219]; date/restraints/parameters: 5448/0/316. X-ray analysis of single crystal of 5 was deposited at Cambridge crystallographic data center with CCDC 862430.

    12. [12]

      [12] (a) K. Faber, H. Stueckler, T. Kappe, Non-steroidal antiinflammatory agents. 1. Synthesis of 4-hydroxy-2-oxo-1, 2-dihydroquinolin-3-yl alkanoic acids by the Wittig reaction of quinisatines, J. Heterocycl. Chem. 21 (1984) 1177-1181; (b) J.V. Johnson, B.S. Rauckman, P.D. Beccanari, B. Roth, 2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 12. 1,2-Dihydroquinolylmethyl analogs with high activity and specificity for bacterial dihydrofolate reductase, J. Med. Chem. 32 (1989) 1942-1949; (c) N. Yamada, S. Kadowaki, K. Takahashi, K. Umeza, MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells, Biochem. Pharmacol. 44 (1992) 1211-1213.

    13. [13]

      [13] (a) G. Kolokythas, N. Pouli, P. Marakos, H. Pratsinis, D. Kletsas, Synthesis and antiproliferative activity of some new azapyranoxanthenone amino derivatives, Eur. J. Med. Chem. 41 (2006) 71-79; (b) M.A. Azuine, H. Tokuda, J. Takayasu, et al., Cancer chemopreventive effect of phenothiazines and related tri-heterocyclic analogues in the 12-O-tetradecanoylphorbol- 13-acetate promoted Epstein-Barr virus early antigen activation and the mouse skin two-stage carcinogenesis models, Pharmacol. Res. 49 (2004) 161-169; (c) S.K. Srivastava, R.P. Tripathi, R. Ramachandran, NAD+-dependent DNA ligase (rv3014c) from mycobacterium tuberculosis: crystal structure of the adenylation domain and identification of novel inhibitors, J. Biol. Chem. 280 (2005) 30273- 30281; (d) H. Brotz-Oesterhelt, I. Knezevic, S. Bartel, et al., Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones, J. Biol. Chem. 278 (2003) 39435-39442.

  • 加载中
    1. [1]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    2. [2]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    3. [3]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    4. [4]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    5. [5]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    8. [8]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return