Citation: Yuan-Yuan Yao, Long Zhang, Zi-Fei Wang, Jing-Kun Xu, Yang-Ping Wen. Electrochemical determination of quercetin by self-assembled platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode[J]. Chinese Chemical Letters, ;2014, 25(4): 505-510. doi: 10.1016/j.cclet.2014.01.028 shu

Electrochemical determination of quercetin by self-assembled platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode

  • Corresponding author: Jing-Kun Xu,  Yang-Ping Wen, 
  • Received Date: 24 October 2013
    Available Online: 8 January 2014

    Fund Project: Natural Science Foundation of Jiangxi Province (No. 2010GZH0041) (No. GJJ11590)Graduate Student Innovation Foundation of Jiangxi Province (No. YC2012-S123). (No. 2010GZH0041)

  • A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite (PtNPs/PEDOT-MeOH) modified glassy carbon electrode (GCE) was successfully developed for the electrochemical determination of quercetin. Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer. Compared with the bare GCE and poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes, the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH. The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering 0.04-91 μmol L-1 and a low detection limit of 5.2 nmol L-1. Furthermore, the modified electrode also exhibited good reproducibility and long-term stability, as well as high selectivity.
  • 加载中
    1. [1]

      [1] N.C. Cook, S. Samman, Flavonoids - chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem. 7 (1996) 66-76.

    2. [2]

      [2] A.K. Verma, J.A. Johnson, M.N. Gould, M.A. Tanner, Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin, Cancer Res. 48 (1988) 5754-5758.

    3. [3]

      [3] P. Xiao, F.O. Zhao, B.Z. Zeng, Voltammetric determination of quercetin at a multiwalled carbon nanotubes paste electrode, Michrochim. J. 85 (2007) 244-249.

    4. [4]

      [4] E. Ranjbari, P. Biparva, M.R. Hadjmohammadi, Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples, Talanta 89 (2012) 117-123.

    5. [5]

      [5] D.G. Watson, E.J. Oliveira, Solid-phase extraction and gas chromatography-mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets, J. Chromatogr. B 723 (1999) 203-210.

    6. [6]

      [6] K. Ishii, T. Furuta, Y. Kasuya, High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection, J. Chromatogr. B 794 (2003) 49-56.

    7. [7]

      [7] A. Molinelli, R. Weiss, B. Mizaikoff, Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine, J. Agric. Food Chem. 50 (2002) 1804 1808.

    8. [8]

      [8] X.Q. Lin, J.B. He, Z.G. Zha, Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry, Sens. Actuators B 119 (2006) 608-614.

    9. [9]

      [9] J.B. He, X.Q. Lin, J. Pan, Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: a comparison with graphite paste electrode via voltammetry and chronopotentiometry, Electroanalysis 17 (2005) 1681- 1686.

    10. [10]

      [10] G.P. Jin, J.B. He, Z.B. Rui, F.S. Meng, Electrochemical behavior and adsorptive stripping voltammetric determination of quercetin at multi-wall carbon nanotubes- modified paraffin-impregnated graphite disk electrode, Electrochim. Acta 51 (2006) 4341-4346.

    11. [11]

      [11] A.C. Oliveira, L.H. Mascaro, Evaluation of carbon nanotube paste electrode modified with copper microparticles and its application to determination of quercetin, Int. J. Electrochem. Sci. 6 (2011) 804-818.

    12. [12]

      [12] M.S. Tehrani, A. Pourhabib, S.W. Husanin, M. Arvand, Electrochemical behavior and voltammetric determination of quercetin in foods by graphene nanosheets modified electrode, Anal. Bioanal. Electrochem. 5 (2013) 1-18.

    13. [13]

      [13] S. Hrapovic, Y.L. Liu, K.B. Male, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 76 (2004) 1083-1088.

    14. [14]

      [14] S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E. Wang, Platinum nanoparticle ensembleon- graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing, ACS Nano 4 (2010) 3959-3968.

    15. [15]

      [15] D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 108 (2008) 746-769.

    16. [16]

      [16] Rajesh, T. Ahuja, D. Kumar, Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications, Sens. Actuators B 136 (2009) 275-286.

    17. [17]

      [17] C. Li, H. Bai, G.Q. Shi, Conducting polymer nanomaterials: electrosynthesis and applications, Chem. Soc. Rev. 38 (2009) 2397-2409.

    18. [18]

      [18] B.T. Li, L.M. Tang, K. Chen, et al., Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires, Chin. Chem. Lett. 22 (2011) 123-126.

    19. [19]

      [19] L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.

    20. [20]

      [20] E. Poverenov, M. Li, A. Bitler, M. Bendikov, Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films, Chem. Mater. 22 (2010) 4019-4025.

    21. [21]

      [21] J. Jang, M. Chang, H. Yoon, Chemical sensors based on highly conductive poly(3,4- ethylenedioxythiophene) nanorods, Adv. Mater. 17 (2005) 1616-1620.

    22. [22]

      [22] L. Groenendaal, G. Zotti, F. Jonas, et al., Electrochemistry of poly(3,4-ethylenedioxythiophene) derivatives, Adv. Mater. 15 (2003) 855-879.

    23. [23]

      [23] A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, vol. 10, CRC Press/Taylor & Francis Group, Boca Raton/London/New York, 2011.

    24. [24]

      [24] Y.P. Wen, L.M. Lu, D. Li, et al., Ascorbate oxidase electrochemical biosensor based on the biocompatible poly(3,4-ethylenedioxythiophene) matrices for agricultural application in crops, Chin. Chem. Lett. 23 (2012) 221-224.

    25. [25]

      [25] A. Lima, P. Schottland, S. Sadki, C. Chevrot, Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate, Synth. Met. 93 (1998) 33-41.

    26. [26]

      [26] Y.H. Xiao, X.Y. Cui, J.M. Hancock, et al., Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes, Sens. Actuators B 99 (2004) 437-443.

    27. [27]

      [27] L.P. Wu, L.M. Lu, L. Zhang, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.

    28. [28]

      [28] Y.P. Wen, D. Li, Y. Lu, et al., Poly(3,4-ethylenedioxythiophene methanol)/ascorbate oxidase/nafion-single-walled carbon nanotubes biosensor for voltammetric detection of vitamin C, Chin. J. Polym. Sci. 30 (2012) 824-836.

    29. [29]

      [29] Y. Lu, Y.P. Wen, B.Y. Lu, et al., Electrosynthesis and characterization of poly(hydroxymethylated- 3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application, Chin. J. Polym. Sci. 30 (2012) 824-836.

    30. [30]

      [30] A.M.O. Brett, M.E. Ghica, Electrochemical oxidation of quercetin, Electroanalysis 15 (2003) 1745-1750.

    31. [31]

      [31] G.R. Xu, S. Kim, Selective determination of quercetin using carbon nanotubemodified electrodes, Electroanalysis 18 (2006) 1786-1792.

  • 加载中
    1. [1]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    5. [5]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    6. [6]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    13. [13]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    14. [14]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    15. [15]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    20. [20]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

Metrics
  • PDF Downloads(0)
  • Abstract views(536)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return