Citation: Tan-Yu Cheng, Jing-Lan Zhuang, Hui Yao, Huai-Sheng Zhang, Guo-Hua Liu. Immobilization of chiral Rh catalyst on glass and application to asymmetric transfer hydrogenation of aryl ketones in aqueous media[J]. Chinese Chemical Letters, ;2014, 25(4): 613-616. doi: 10.1016/j.cclet.2014.01.007 shu

Immobilization of chiral Rh catalyst on glass and application to asymmetric transfer hydrogenation of aryl ketones in aqueous media

  • Corresponding author: Tan-Yu Cheng,  Guo-Hua Liu, 
  • Received Date: 7 October 2013
    Available Online: 24 December 2013

  • A chiral catalyst, Cp*RhTsDPEN (Cp* = pentamethyl cyclopentadiene, TsDPEN = substitutive phenylsulfonyl-1,2-diphenylethylenediamine), was synthesized and immobilized at the surface of glass. The immobilized catalyst exhibited good catalytic efficiency for asymmetric transfer hydrogenation of aromatic ketones in water with HCOONa as hydrogen source.
  • 加载中
    1. [1]

      [1] R. Hong, G. Han, J.M. Fernández, et al., Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers, J. Am. Chem. Soc. 128 (2006) 1078-1079.

    2. [2]

      [2] P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1A? resolution, Science 318 (2007) 430-433.

    3. [3]

      [3] A. Verma, O. Uzun, Y. Hu, et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles, Nat. Mater. 7 (2008) 588- 595.

    4. [4]

      [4] G. He, G. Zhang, F. Lu, Y. Fang, Fluorescent film sensor for vapor-phase nitroaromatic explosives via monolayer assembly of oligo(diphenylsilane) on glass plate surfaces, Chem. Mater. 21 (2009) 1494-1499.

    5. [5]

      [5] L. Ding, Y. Liu, Y. Cao, et al., A single fluorescent self-assembled monolayer film sensor with discriminatory power, J. Mater. Chem. 22 (2012) 11574-11582.

    6. [6]

      [6] S. Zhang, F. Lü, L. Gao, L. Ding, Y. Fang, Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics, Langmuir 23 (2006) 1584-1590.

    7. [7]

      [7] N.P. Reynolds, J.D. Tucker, P.A. Davison, et al., Site-specific immobilization and micrometer and nanometer scale photopatterning of yellow fluorescent protein on glass surfaces, J. Am. Chem. Soc. 131 (2009) 896-897.

    8. [8]

      [8] S. Nakagaki, A.R. Ramos, F.L. Benedito, P.G. Peralta-Zamora, A.J.G. Zarbin, Immobilization of iron porphyrins into porous vycor glass: characterization and study of catalytic activity, J. Mol. Catal. A: Chem. 185 (2002) 203-210.

    9. [9]

      [9] I.O. Benítez, B. Bujoli, L.J. Camus, et al., Monolayers as models for supported catalysts: zirconium phosphonate films containing manganese(ⅡI) porphyrins, J. Am. Chem. Soc. 124 (2002) 4363-4370.

    10. [10]

      [10] X. Wu, C. Wang, J. Xiao, Asymmetric transfer hydrogenation in water with platinum group metal catalysts, Platinum Met. Rev. 54 (2010) 3-19.

    11. [11]

      [11] R. Malacea, R. Poli, E. Manoury, Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes, Coordin. Chem. Rev. 254 (2010) 729-752.

    12. [12]

      [12] T. Jerphagnon, R. Haak, F. Berthiol, et al., Ruthenacycles and iridacycles as catalysts for asymmetric transfer hydrogenation and racemisation, Top. Catal. 53 (2010) 1002-1008.

    13. [13]

      [13] C. Wang, X. Wu, J. Xiao, Broader, greener, and more efficient: recent advances in asymmetric transfer hydrogenation, Chem. Asian J. 3 (2008) 1750-1770.

    14. [14]

      [14] T. Ikariya, A.J. Blacker, Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts, Acc. Chem. Res. 40 (2007) 1300-1308.

    15. [15]

      [15] S. Gladiali, E. Alberico, Asymmetric transfer hydrogenation: chiral ligands and applications, Chem. Soc. Rev. 35 (2006) 226-236.

    16. [16]

      [16] C. Bianchini, P. Barbaro, Recent aspects of asymmetric catalysis by immobilized chiral metal catalysts, Top. Catal. 19 (2002) 17-32.

    17. [17]

      [17] G. Zassinovich, G. Mestroni, S. Gladiali, Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts, Chem. Rev. 92 (1992) 1051-1069.

    18. [18]

      [18] S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(Ⅱ) complexes, J. Am. Chem. Soc. 117 (1995) 7562-7563.

    19. [19]

      [19] R. Noyori, S. Hashiguchi, Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes, Acc. Chem. Res. 30 (1997) 97-102.

    20. [20]

      [20] R. Noyori, Asymmetric catalysis: science and opportunities (Nobel Lecture), Angew. Chem. Int. Ed. 41 (2002) 2008-2022.

    21. [21]

      [21] S. Minakata, M. Komatsu, Organic reactions on silica in water, Chem. Rev. 109 (2008) 711-724.

    22. [22]

      [22] C. Li, Chiral synthesis on catalysts immobilized in microporous and mesoporous materials, Catal. Rev. 46 (2004) 419-492.

    23. [23]

      [23] S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    24. [24]

      [24] T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature 378 (1995) 159-162.

    25. [25]

      [25] J. Lu, P.H. Toy, Organic polymer supports for synthesis and for reagent and catalyst immobilization, Chem. Rev. 109 (2009) 815-838.

    26. [26]

      [26] S.C. Petrosius, R.S. Drago, V. Young, G.C. Grunewald, Low-temperature decomposition of some halogenated hydrocarbons using metal oxide/porous carbon catalysts, J. Am. Chem. Soc. 115 (1993) 6131-6137.

    27. [27]

      [27] H. Zhang, R. Jin, H. Yao, et al., Core-shell structured mesoporous silica: a new immobilized strategy for rhodium catalyzed asymmetric transfer hydrogenation, Chem. Commun. 48 (2012) 7874-7876.

    28. [28]

      [28] Y. Sun, G. Liu, H. Gu, et al., Magnetically recoverable SiO2-coated Fe3O4 nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium, Chem. Commun. 47 (2011) 2583- 2585.

    29. [29]

      [29] G. Liu, H. Gu, Y. Sun, et al., Magnetically recoverable nanoparticles: highly efficient catalysts for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium, Adv. Synth. Catal. 353 (2011) 1317-1324.

    30. [30]

      [30] G. Liu, J. Wang, T. Huang, et al., Mesoporous silica-supported iridium catalysts for asymmetric hydrogenation reactions, J. Mater. Chem. 20 (2010) 1970-1975.

    31. [31]

      [31] G. Liu, Y. Sun, J. Wang, et al., Microwave-assisted tandem allylation-isomerization reaction catalyzed by a mesostructured bifunctional catalyst in aqueous media, Green Chem. 11 (2009) 1477-1481.

    32. [32]

      [32] X. Wu, X. Li, A. Zanotti-Gerosa, et al., RhⅡI- and IrⅡI-catalyzed asymmetric transfer hydrogenation of ketones in water, Chem. Eur. J. 14 (2008) 2209-2222.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    3. [3]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    6. [6]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    7. [7]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    11. [11]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    12. [12]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    15. [15]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    16. [16]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    17. [17]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    18. [18]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

Metrics
  • PDF Downloads(0)
  • Abstract views(472)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return