Citation: Hong-Rui Zhang, Ji-Jun Xue, Rui Chen, Yu Tang, Ying Li. A bifunctional rosin-derived thiourea catalyzed asymmetric tandem reaction and its new mechanism[J]. Chinese Chemical Letters, ;2014, 25(05): 710-714. doi: 10.1016/j.cclet.2013.12.024 shu

A bifunctional rosin-derived thiourea catalyzed asymmetric tandem reaction and its new mechanism

  • Corresponding author: Yu Tang,  Ying Li, 
  • Received Date: 6 November 2013
    Available Online: 31 December 2013

    Fund Project:

  • A direct asymmetric tandem reaction of α-nitro ketones with β,γ-unsaturated α-ketoesters was found to be catalyzed by a bifunctional rosin-derived thiourea and gave 5-nitro-2-actoxyl-2-pentenates in excellent ee values and yields, a much better result than previously reported. Furthermore, through theoretical analysis, literature research and experimental verifications, a new mechanism involving an inverse-electron-demand Diels-Alder (IEDDAR) and a retro-Henry reaction was proposed.
  • 加载中
    1. [1]

      [1] (a) A. Dondoni, A. Massi, Asymmetric organocatalysis: from infancy to adolescence, Angew. Chem. Int. Ed. 47 (2008) 4638-4660; (b) X.H. Yu, W. Wang, Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines, Org. Biomol. Chem. 6 (2008) 2037-2046; (c) D. Enders, C. Grondal, M.R.M. Hüttl, Asymmetric organocatalytic domino reactions, Angew. Chem. Int. Ed. 46 (2007) 1570-1581; (d) A. Erkkilä, I. Majander, P.M. Pihko, Iminium catalysis, Chem. Rev. 107 (2007) 5416-5470; (e) G. Guillena, D.J. Ramón, M. Yus, Organocatalytic enantioselective multicomponent reactions (OEMCRs), Tetrahedron: Asymmetry 18 (2007) 693-700; (f) K.C. Nicolaou, D.J. Edmonds, P.G. Bulger, Cascade reactions in total synthesis, Angew. Chem. Int. Ed. 45 (2006) 7134-7186; (g) L.F. Tietze, G. Brasche, K. Gerike, Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006, pp. 1-588; (h) H. Pellissier, Asymmetric domino reactions. Part A. Reactions based on the use of chiral auxiliaries, Tetrahedron 62 (2006) 1619-1625; (i) H. Pellissier, Asymmetric domino reactions. Part B. Reactions based on the use of chiral catalysts and biocatalysts, Tetrahedron 62 (2006) 2143-2173.

    2. [2]

      [2] (a) S. Reymond, J. Cossy, Copper-catalyzed Diels-Alder reactions, Chem. Rev. 108 (2008) 5359-5406; (b) K. Ishihara, M. Fushimi, M. Akakura, Rational design of minimal artificial Diels-Alderases based on the copper(Ⅱ) cation-aromatic (attractive interaction), Acc. Chem. Res. 40 (2007) 1049-1055; (c) E.J. Corey, Catalytic enantioselective Diels-Alder reactions: methods, mechanistic fundamentals, pathways, and applications, Angew. Chem. Int. Ed. 41 (2002) 1650-1667; (d) Y. Hayashi, Catalytic asymmetric Diels-Alder reactions, in: S. Kobayashi, K.A. Jøgensen (Eds.), Cycloaddition Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2001, pp. 5-55.

    3. [3]

      [3] (a) M.S. Xie, X.H. Chen, Y. Zhu, et al., Asymmetric three-component inverse electron-demand aza-Diels-Alder reaction: efficient synthesis of ring-fused tetrahydroquinolines, Angew. Chem. Int. Ed. 49 (2010) 3799-3802; (b) P.F. Li, H. Yamamoto, Lewis acid catalyzed inverse-electron-demand Diels- Alder reaction of tropones, J. Am. Chem. Soc. 131 (2009) 16628-16629; (c) J. Esquivias, R.G. Arrayás, J.C. Carretero, Catalytic asymmetric inverse-electron- demand Diels-Alder reaction of n-sulfonyl-1-aza-1,3-dienes, J. Am. Chem. Soc. 129 (2007) 1480-1481; (d) R.C. Clark, S.S. Pfeiffer, D.L. Boger, Diastereoselective Diels-Alder reactions of n-sulfonyl-1-aza-1,3-butadienes with optically active enol ethers: an asymmetric variant of the 1-azadiene Diels-Alder reaction, J. Am. Chem. Soc. 128 (2006) 2587-2593.

    4. [4]

      [4] (a) X.X. Jiang, D. Fu, X.M. Shi, S.L. Wang, R. Wang, PPh3-catalyzed synthesis of dicyano-2-methylenebut-3-enoates as efficient dienes in catalytic asymmetric inverse-electron-demand Diels-Alder reaction, Chem. Commun. 47 (2011) 8289- 8291; (b) S.X. Dong, X.H. Liu, X.H. Chen, et al., Chiral bisguanidine-catalyzed inverseelectron- demand hetero-Diels-Alder reaction of chalcones with azlactones, J. Am. Chem. Soc. 132 (2010) 10650-10651; (c) H.X. Xie, L.S. Zu, H.R. Oueis, et al., Proline-catalyzed direct inverse electron demand Diels-Alder reactions of ketones with 1,2,4,5-tetrazines, Org. Lett. 10 (2008) 1923-1926; (d) S. Samanta, J. Krause, T. Mandal, C.G. Zhao, Inverse-electron-demand hetero- Diels-Alder reaction of β,γ-unsaturated a-ketophosphonates catalyzed by prolinal dithioacetals, Org. Lett. 9 (2007) 2745-2748; (e) M. He, J.R. Struble, J.W. Bode, Highly enantioselective azadiene Diels-Alder reactions catalyzed by chiral n-heterocyclic carbenes, J. Am. Chem. Soc. 128 (2006) 8418-8420; (f) T. Akiyama, H. Morita, K. Fuchibe, Chiral brønsted acid-catalyzed inverse electron-demand aza Diels-Alder reaction, J. Am. Chem. Soc. 128 (2006) 13070-13071.

    5. [5]

      [5] K. Juhl, K.A. Jøgensen, The first organocatalytic enantioselective inverse-electrondemand hetero-Diels-Alder reaction, Angew. Chem. Int. Ed. 42 (2003) 1498- 1501.

    6. [6]

      [6] (a) J.L. Li, T.R. Kang, S.L. Zhou, et al., Organocatalytic asymmetric inverse-electrondemand Diels-Alder reaction of electron-deficient dienes and crotonaldehyde, Angew. Chem. Int. Ed. 49 (2010) 6418-6420; (b) B. Han, Z.Q. He, J.L. Li, et al., Organocatalytic regio- and stereoselective inverse-electron-demand aza-Diels-Alder reaction of β,γ-unsaturated aldehydes and N-tosyl-1-aza-1,3-butadienes, Angew. Chem. Int. Ed. 48 (2009) 5474-5477; (c) B. Han, J.L. Li, C. Ma, S.J. Zhang, Y.C. Chen, Organocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-sulfonyl-1-aza-1,3- butadienes and aldehydes, Angew. Chem. Int. Ed. 47 (2008) 9971-9974.

    7. [7]

      [7] Y.J. Gao, Q. Ren, W.Y. Siau, J. Wang, Asymmetric organocatalytic cascade Michael/ hemiketalization/retro-Henry reaction of β,γ-unsaturated ketoesters with anitroketones, Chem. Commun. 47 (2011) 5819-5821.

    8. [8]

      [8] (a) X.X. Jiang, Y.F. Zhang, X. Liu, et al., Enantio- and diastereoselective asymmetric addition of 1,3-dicarbonyl compounds to nitroalkenes in a doubly stereocontrolled manner catalyzed by bifunctional rosin-derived amine thiourea catalysts, J. Org. Chem. 74 (2009) 5562-5567; (b) X.X. Jiang, G. Zhang, D. Fu, et al., Direct organocatalytic asymmetric aldol reaction of a-isothiocyanato imides to α-ketoesters under low ligand loading: a doubly stereocontrolled approach to cyclic thiocarbamates bearing chiral quaternary stereocenters, Org. Lett. 12 (2010) 1544-1547; (c) X.X. Jiang, X.M. Shi, S.L. Wang, et al., Bifunctional organocatalytic strategy for inverse-electron-demand Diels-Alder reactions: highly efficient in situ substrate generation and activation to construct azaspirocyclic skeletons, Angew. Chem. Int. Ed. 51 (2012) 2084-2087; (d) X.X. Jiang, L.P. Wu, Y.H. Xing, et al., Highly enantioselective Friedel-Crafts alkylation reaction catalyzed by rosin-derived tertiary amine-thiourea: synthesis of modified chromanes with anticancer potency, Chem. Commun. 48 (2012) 446-448; (e) Y.M. Cao, X.X. Jiang, L.P. Liu, et al., Enantioselective Michael/cyclization reaction sequence: scaffold-inspired synthesis of spirooxindoles with multiple stereocenters, Angew. Chem. Int. Ed. 50 (2011) 9124-9127; (f) X.X. Jiang, Y.F. Zhang, L.P. Wu, et al., Doubly stereocontrolled asymmetric aza-Henry reaction with in situ generation of N-Boc-imines catalyzed by novel rosin-derived amine thiourea catalysts, Adv. Synth. Catal. 351 (2009) 2096- 2100; (g) X.X. Jiang, Y.F. Zhang, A.S.C. Chan, R.Wang, Highly enantioselective synthesis of γ-nitro heteroaromatic ketones in a doubly stereocontrolled manner catalyzed by bifunctional thiourea catalysts based on dehydroabietic amine: a doubly stereocontrolled approach to pyrrolidine carboxylic acids, Org. Lett. 11 (2009) 153-156; (h) X.X. Jiang, D. Fu, G. Zhang, et al., Highly diastereo- and enantioselective Mannich reaction of lactones with N-Boc-aldimines catalyzed by bifunctional rosin-derived amine thiourea catalysts, Chem. Commun. 46 (2010) 4294-4296.

    9. [9]

      [9] X.X. Jiang, L. Wang, M. Kai, et al., Asymmetric inverse-electron-demand hetero- Diels-Alder reaction for the construction of bicyclic skeletons with multiple stereocenters by using a bifunctional organocatalytic strategy: an efficient approach to chiral macrolides, Chem. Eur. J. 18 (2012) 11465-11473.

    10. [10]

      [10] (a) S. Kanemasa, Y. Oderaotoshi, S. Sakaguchi, et al., Transition-metal aqua complexes of 4,6-dibenzofurandiyl-2,2'-bis(4-phenyloxazoline). Effective catalysis in Diels Alder reactions showing excellent enantioselectivity, extreme chiral amplification, and high tolerance to water, alcohols, amines, and acids, J. Am. Chem. Soc. 120 (1998) 3074-3088; (b) J. Zhou, Y. Tang, Pseudo-C3-symmetric trisoxazolines as ligands in copper catalyzed enantioselective Diels-Alder reaction, Org. Biomol. Chem. 2 (2004) 429-433; (c) S. Tardy, A. Tatibouet, P. Rollin, G. Dujardin, N-Vinyl-1,3-oxazolidine-2- thiones as dienophiles in inverse hetero-Diels-Alder reactions: new proposals for asymmetric induction, Synlett 9 (2006) 1425-1427; (d) F. Gohier, K. Bouhadjera, D. Faye, et al., Lewis acid tuned facial stereodivergent HDA reactions using b-substituted n-vinyloxazolidinones, Org. Lett. 9 (2007) 211-214; (e) K.B. Jensen, J. Thorhauge, R.G. Hazell, K.A. Jøgensen, Catalytic asymmetric Friedel-Crafts alkylation of β,γ-unsaturated α-ketoesters: enantioselective addition of aromatic C-H bonds to alkenes, Angew. Chem. Int. Ed. 40 (2001) 160- 163; (f) K.A. Jøgensen, Asymmetric Friedel-Crafts reactions: catalytic enantioselective addition of aromatic and heteroaromatic C-H bonds to activated alkenes, carbonyl compounds, and imines, Synthesis 7 (2003) 1117-1125.

    11. [11]

      [11] (a) R.J. Lu, Y.Y. Yan, J.J. Wang, et al., Organocatalyticasymmetric conjugate addition and cascade acyl tranfer reactionof a-Nitroketones, J. Org. Chem. 76 (2011) 6230-6239; (b) P.F. Li, S.H. Chan, A.S. Chan, F.Y. Kwong, Organocatalytic asymmetric Michaeltype reaction between β,γ-unsaturated a-keto ester and a-nitro ketone, Org. Biomol. Chem. 9 (2011) 7997-7999; (c) R.P. Herrera, D. Monge, E.M. Martín-Zamora, R. Fernández, J.M. Lassaletta, Organocatalytic conjugate addition of formaldehyde N,N-dialkylhydrazones to β,γ-unsaturated a-keto esters, Org. Lett. 9 (2007) 3303-3306; (d) M.A. Calter, J. Wang, Catalytic, asymmetric michael reactions of cyclic diketones with β,γ-unsaturated α-ketoesters, Org. Lett. 11 (2009) 2205-2208; (e) Y.L. Liu, D.J. Shang, X. Zhou, et al., AgAsF6/Sm(OTf)3 promoted reversal of enantioselectivity for the asymmetric friedel-crafts alkylations of indoles with β,γ-unsaturated α-ketoesters, Org. Lett. 12 (2010) 180-183; (f) E. Sánchez-Larios, K. Thai, F. Bilodeau, M. Gravel, Highly enantioselective intermolecular Stetter reactions of β-aryl acceptors: α-ketoester moiety as handle for activation and synthetic manipulations, Org. Lett. 13 (2011) 4942-4945.

  • 加载中
    1. [1]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    6. [6]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    9. [9]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    13. [13]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    16. [16]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    17. [17]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    18. [18]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return