Citation: Bagher Mohammadi, Mehdi Adib. Microwave assisted one-pot tandem three-component synthesis of 2,4,5-triary1-2-4-dihydro-3H-1,2,4-triazol-3-one derivatives[J]. Chinese Chemical Letters, ;2014, 25(4): 553-556. doi: 10.1016/j.cclet.2013.12.018 shu

Microwave assisted one-pot tandem three-component synthesis of 2,4,5-triary1-2-4-dihydro-3H-1,2,4-triazol-3-one derivatives

  • Corresponding author: Bagher Mohammadi, 
  • Received Date: 29 September 2013
    Available Online: 9 December 2013

  • This work described a one-pot tandem three-component synthesis of 2,4,5-triaryl-2,4-dihydro-3H-1,2,4-triazol-3-ones using a simple reaction between phenylhydrazines, benzaldehydes and phenyl isocyanates under microwave irradiation and solvent-free conditions in good to excellent yields.
  • 加载中
    1. [1]

      [1] J.E. Biggs-Houck, A. Younai, J.T. Shaw, Recent advances in multicomponent reactions for diversity-oriented synthesis, Curr. Opin. Chem. Biol. 14 (2010) 371-382.

    2. [2]

      [2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109 (2009) 4439-4486.

    3. [3]

      [3] J.Y. Lu, X.Y. Gong, H.J. Yang, H. Fu, Concise copper-catalyzed one-pot tandem synthesis of benzimidazo[1,2-b]isoquinolin-11-one derivatives, Chem. Commun. 46 (2010) 4172-4174.

    4. [4]

      [4] Y.G. Zhu, C.W. Zhai, Y.L. Yue, L.P. Yang, W.H. Hu, One-pot three-component tandem reaction of diazo compounds with anilines and unsaturated ketoesters: a novel synthesis of 2,3-dihydropyrrole derivatives, Chem. Commun. 11 (2009) 1362-1364.

    5. [5]

      [5] B. Ganem, Strategies for innovation in multicomponent reaction design, Acc. Chem. Res. 42 (2009) 463-472.

    6. [6]

      [6] H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Maximizing synthetic efficiency: multi-component transformations lead the way, Chem. Eur. J. 6 (2000) 3321- 3329.

    7. [7]

      [7] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.

    8. [8]

      [8] J.P. Zhu, Recent developments in the isonitrile-based multicomponent synthesis of heterocycles, Eur. J. Org. Chem. 7 (2003) 1133-1144.

    9. [9]

      [9] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    10. [10]

      [10] W.T. Ashton, L.L. Chang, K.L. Flanagan, et al., Triazolinone biphenylsulfonamide derivatives as orally active angiotensin Ⅱ antagonists with potent AT1 receptor affinity and enhanced AT2 affinity, J. Med. Chem. 37 (1994) 2808-2824.

    11. [11]

      [11] N. Demirbas, A. Demirbas, S.A. Karaoglu, Synthesis and biological activities of new 1,2,4-triazole-3-one derivatives, Russ. J. Bioorg. Chem. 31 (2005) 387-397.

    12. [12]

      [12] N. Demirbasş, R. Ugurluoglu, A. Demirbasş, Synthesis of 3-alkyl(aryl)-4-alkylidenamino- 4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5- dihydro-1H-1,2,4-triazol-5-ones as antitumor agents, Bioorg. Med. Chem. 10 (2002) 3717-3723.

    13. [13]

      [13] N.S. Khalil, Efficient synthesis of novel 1,2,4-triazole fused acyclic and 21-28 membered macrocyclic and/or lariat macrocyclic oxaazathia crown compounds with potential antimicrobial activity, Eur. J. Med. Chem. 45 (2010) 5265-5277.

    14. [14]

      [14] J.M. Kane, B.M. Baron, M.W. Dudley, et al., 2,4-Dihydro-3H-1,2,4-triazol-3-ones as anticonvulsant agents, J. Med. Chem. 33 (1990) 2772-2777.

    15. [15]

      [15] C.Q. Shen, X.Y. Che, W.Y. Wang, et al., Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism, Eur. J. Med. Chem. 46 (2011) 5276-5282.

    16. [16]

      [16] G. Aperis, E. Mylonakis, Newer triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations, Expert Opin. Investig. Drugs 15 (2006) 579- 602.

    17. [17]

      [17] A. Davoodnia, M. Bakavoli, M. Soleimany, H. Behmadi, A new one-pot neat synthesis of 1,2,4-triazol-3-ones through 4-(N,N-dimethylamino) pyridine (DMAP) catalyzed cyclocondensation of ethyl carbazate with aryl nitriles, Chin. Chem. Lett. 19 (2008) 685-688.

    18. [18]

      [18] H. Gadegoni, S. Manda, Synthesis and screening of some novel substituted indoles contained 1,3,4-oxadiazole and 1,2,4-triazole moiety, Chin. Chem. Lett. 24 (2013) 127-130.

    19. [19]

      [19] H. Tang, C. Zheng, X. Ren, et al., Synthesis and biological evaluation of novel triazole derivatives as antifungal agents, Chin. Chem. Lett. 24 (2013) 219-222.

    20. [20]

      [20] P.Z. Zhang, S.F. Zhou, T.R. Li, L. Jiang, Efficient synthesis and in vitro antifungal activity of 1H-benzimidazol-1-yl acetates/propionates containing 1H-1,2,4-triazole moiety, Chin. Chem. Lett. 23 (2012) 1381-1384.

    21. [21]

      [21] X. Qin, H.B. Yu, H. Dai, et al., Synthesis and plant-growth regulatory activities of novel imine derivatives containing 1H-1,2,4-triazole and thiazole rings, Chin. Chem. Lett. 21 (2010) 283-286.

    22. [22]

      [22] J.R. Kavaji, O. Kotresh, B.V. Badami, Chemical reactivity of 3-aryl-5-methyl-1,3,4- oxadiazolin-2-ones towards nitrogen nucleophiles, J. Chem. Res. (2003) 275-278.

    23. [23]

      [23] I. Kawasaki, A. Domen, S. Kataoka, et al., A new synthetic method for substituted 2,4-dihydro-3H-1,2,4-triazol-3-ones and 3-thiones via 1,4-dialkyl-5-phenylthio- 1H-1,2,4-triazolium salts, Heterocycles 60 (2003) 351-363.

    24. [24]

      [24] J.Z. Deng, C.S. Burgey, A novel and efficient synthesis of 2,5-substituted 1,2,4- triazol-3-ones, Tetrahedron Lett. 46 (2005) 7993-7996.

    25. [25]

      [25] H. Chouaieb, M. Ben Mosbah, M. Kossentini, M. Salem, Novel method for the synthesis of 1,2,4-triazoles and 1,2,4-triazol-3-ones, Synth. Commun. 33 (2003) 3861-3868.

    26. [26]

      [26] S. Kamiya, K. Yamaguchi, M. Miyahara, N. Miyata, Cyclization of 1-aryl-1-nitroso- 3-(2-pyridylmethyl)ureas to1-aryl-5-(2-pyridyl)-2,4-dihydro-1,2,4-triazolo-3- ones, Chem. Pharm. Bull. 38 (1990) 3226-3229.

    27. [27]

      [27] M. Chen, X.F. Wang, S.S. Wang, et al., Synthesis, characterization and fungicidal activities of novel fluorinated 3,5-disubstituted-4H-1,2,4-triazol-4-amines, J. Fluor. Chem. 135 (2012) 323-329.

    28. [28]

      [28] S.R. Devineni, S. Doddaga, R. Donka, N.R. Chamarthi, CeCl3·7H2O-SiO2: catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of a-diaminophosphonates, Chin. Chem. Lett. 24 (2013) 759-763.

    29. [29]

      [29] H. Zare, M.M. Ghanbari, M. Jamali, A. Aboodi, A novel and efficient strategy for the synthesis of various carbamates using carbamoyl chlorides under solvent-free and grinding conditions using microwave irradiation, Chin. Chem. Lett. 23 (2012) 883-886.

    30. [30]

      [30] B. Mohammadi, M. Shafieey, H. Kazemi, A. Ramazani, Pseudo four-component and regioselective synthesis of 4-amino-3,5-dicyano-6-arylphthalates using triethylamine catalyst, Chin. Chem. Lett. 24 (2013) 497-499.

  • 加载中
    1. [1]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    6. [6]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    9. [9]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    10. [10]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    11. [11]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    15. [15]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    16. [16]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    17. [17]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    18. [18]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

Metrics
  • PDF Downloads(0)
  • Abstract views(452)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return