Citation: Jing-Wei Wan, Xue-Bing Ma, Rong-Xing He, Ming Li. An easy route to exotic 9-epimers of 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R, 9S)-configurations through two inversions of configuration[J]. Chinese Chemical Letters, ;2014, 25(4): 557-560. doi: 10.1016/j.cclet.2013.12.008 shu

An easy route to exotic 9-epimers of 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R, 9S)-configurations through two inversions of configuration

  • Corresponding author: Xue-Bing Ma,  Ming Li, 
  • Received Date: 8 October 2013
    Available Online: 28 November 2013

  • Four exotic chiral organocatalysts, 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R, 9S)- configurations, were conveniently synthesized for the first time in 27-72% total yields through two conversions of configuration at the 9-stereogenic centers of commercially available cinchona alkaloids.
  • 加载中
    1. [1]

      [1] (a) J. Seayad, B. List, Asymmetric organocatalysis, Org. Biomol. Chem. 3 (2005) 719-724; (b) C.F. Barbas ⅡI, Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus, Angew. Chem. Int. Ed. 47 (2008) 42-47; (c) W. Notz, F. Tanaka, C.F. Barbas ⅡI, Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric Aldol, Mannich, Michael, and Diels-Alder reactions, Acc. Chem. Res. 37 (2004) 580-591; (d) H. Chen, R. Jiang, Q.F. Wang, et al., Synthesis of chiral dihydrofuran compounds by thiourea derivatives-catalyzed "interrupted" Feist-Bénary reaction, Chin. Chem. Lett. 21 (2010) 167-170.

    2. [2]

      [2] (a) S.K. Tian, Y.G. Chen, J.F. Hang, et al., Asymmetric organic catalysis with modified cinchona alkaloids, Acc. Chem. Res. 37 (2004) 621-631; (b) S.J. Connon, Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts, Chem. Commun. (2008) 2499-2510; (c) T. Marcelli, H. Hiemstra, Cinchona alkaloids in asymmetric organocatalysis, Synthesis 8 (2010) 1229-1279.

    3. [3]

      [3] (a) J. Zhou, V. Wakchaure, P. Kraft, B. List, Primary-amine-catalyzed enantioselective intramolecular aldolizations, Angew. Chem. Int. Ed. 47 (2008) 7656-7658; (b) B.L. Zheng, Q.Z. Liu, C.S. Guo, X.L. Wang, L. He, Highly enantioselective direct Aldol reaction catalyzed by cinchona derived primary amines, Org. Biomol. Chem. 5 (2007) 2913-2915; (c) J.Q. Zhou, J.W. Wan, X.B. Ma, W. Wang, Copolymer-supported heterogeneous organocatalyst for asymmetric Aldol addition in aqueous medium, Org. Biomol. Chem. 10 (2012) 4179-4185; (d) W.Wang, X.B.Ma, J.W.Wan, J. Cao, Q. Tang, Preparation and confinement effect of a heterogeneous 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric Aldol addition in aqueous medium, Dalton Trans. 41 (2012) 5715-5726.

    4. [4]

      [4] R.P. Singh, K. Bartelson, Y. Wang, et al., Enantioselective Diels-Alder reaction of simple α,β-unsaturated ketones with a cinchona alkaloid catalyst, J. Am. Chem. Soc. 130 (2008) 2422-2423.

    5. [5]

      [5] (a) H.M. Li, Y.Q. Wang, L. Deng, Enantioselective Friedel-Crafts reaction of indoles with carbonyl compounds catalyzed by bifunctional cinchona alkaloids, Org. Lett. 8 (2006) 4063-4065; (b) G. Bartoli, M. Bosco, A. Carlone, et al., Organocatalytic asymmetric Friedel- Crafts alkylation of indoles with simple α,β-unsaturated ketones, Org. Lett. 9 (2007) 1403-1405.

    6. [6]

      [6] P. Hammar, T. Marcelli, H. Hiemstra, F. Himo, Density functional theory study of the Cinchona thiourea-catalyzed Henry reaction: mechanism and enantioselectivity, Adv. Synth. Catal. 349 (2007) 2537-2548.

    7. [7]

      [7] T.Y. Liu, H.L. Cui, J. Long, et al., Organocatalytic and highly stereoselective direct vinylogous Mannich reaction, J. Am. Chem. Soc. 129 (2007) 1878-1879.

    8. [8]

      [8] (a) P.F. Li, Y.C. Wang, X.M. Liang, J.X. Ye, Asymmetric multifunctional organocatalytic Michael addition of nitroalkanes to α,β-unsaturated ketones, Chem. Commun. 28 (2008) 3302-3304; (b) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts, Org. Lett. 7 (2005) 1967-1969; (c) J.P. Malerich, K. Hagihara, V.H. Rawal, Chiral squaramide derivatives are excellent hydrogen bond donor catalysts, J. Am. Chem. Soc. 130 (2008) 14416-14417.

    9. [9]

      [9] H.Y. Jiang, C.F. Yang, C. Li, et al., Heterogeneous enantioselective hydrogenation of aromatic ketones catalyzed by cinchona- and phosphine-modified iridium catalysts, J. Angew. Chem. Int. Ed. 47 (2008) 9240-9244.

    10. [10]

      [10] (a) X.W. Wang, C.M. Reisinger, B. List, Catalytic asymmetric epoxidation of cyclic enones, J. Am. Chem. Soc. 130 (2008) 6070-6071; (b) X.J. Lu, Y. Liu, B.F. Sun, B. Cindric, L. Deng, Catalytic enantioselective peroxidation of α,β-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 8134-8135; (c) Q.F. Wang, H. Chen, P. Liu, et al., Asymmetric epoxidation of alpha, betaenones catalyzed by chiral amine salts, Chin. J. Org. Chem. 29 (2009) 1617-1620; (d) X.D. Liu, X.L. Bai, X.P. Qiu, L.X. Gao, Asymmetric phase-transfer mediated epoxidation of alpha, beta-enones using dendritic catalysts derived from cinchona alkaloids, Chin. Chem. Lett. 16 (2005) 975-978.

    11. [11]

      [11] W. Chen, W. Du, Y.Z. Duan, et al., Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding, Angew. Chem. Int. Ed. 46 (2007) 7667-7670.

    12. [12]

      [12] H. Brunner, M.A. Baur, a-Amino acid derivatives by enantioselective decarboxylation, Eur. J. Org. Chem. (2003) 2854-2862.

    13. [13]

      [13] (a) S.H. Oh, H.S. Rho, J.W. Lee, et al., A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: prevention of catalyst aggregation, Angew. Chem. Int. Ed. 47 (2008) 7872-7875; (b) H.S. Rho, S.H. Oh, J.W. Lee, et al., Bifunctional organocatalyst for methanolytic desymmetrization of cyclic anhydrides: increasing enantioselectivity by catalyst dilution, Chem. Commun. (2008) 1208-1210.

    14. [14]

      [14] M. Bartók, Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts, Chem. Rev. 110 (2010) 1663-1705.

    15. [15]

      [15] Ł. Sidorowicz, J. Skarżewski, Easy access to 9-epimers of cinchona alkaloids: onepot inversion by Mitsunobu esterification-saponification, Synthesis 5 (2011) 708-710.

    16. [16]

      [16] H. Brunner, J. Bügler, B. Nuber, Enantioselective catalysis 98. Preparation of 9- amino(9-deoxy)cinchona alkaloids, Tetrahedron: Asymmetry 6 (1995) 1699- 1702.

    17. [17]

      [17] C.G. Oliva, A.M.S. Silva, D.I.S.P. Resende, F.A.A. Paz, J.A.S. Cavaleiro, Highly enantioselective 1,4-Michael additions of nucleophiles to unsaturated aryl ketones with organocatalysis by bifunctional cinchona alkaloids, Eur. J. Org. Chem. (2010) 3449-3458.

    18. [18]

      [18] H. Brunner, P. Schmidt, M. Prommesberger, Enantioselective catalysis. Part 133: Conformational analysis of amides of 9-amino(9-deoxy)epicinchonine, Tetrahedron: Asymmetry 11 (2000) 1501-1502.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    5. [5]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    6. [6]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    7. [7]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    8. [8]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    9. [9]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    10. [10]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    11. [11]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    12. [12]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    13. [13]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    14. [14]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    15. [15]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    16. [16]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    17. [17]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    18. [18]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    19. [19]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    20. [20]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

Metrics
  • PDF Downloads(0)
  • Abstract views(488)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return