Citation: Wen-You Li, Ying-Xiao Zong, Jun-Ke Wang, Yu-Ying Niu. Sulfonated poly(4-vinylpyridine) heteropolyacid salts:A reusable green solid catalyst for Mannich reaction[J]. Chinese Chemical Letters, ;2014, 25(4): 575-578. doi: 10.1016/j.cclet.2013.11.022 shu

Sulfonated poly(4-vinylpyridine) heteropolyacid salts:A reusable green solid catalyst for Mannich reaction

  • Corresponding author: Ying-Xiao Zong,  Jun-Ke Wang, 
  • Received Date: 22 September 2013
    Available Online: 5 November 2013

    Fund Project: This work was financially supported by Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities (No. XZ1011) (No. XZ1011) the President's Funds of Hexi University (No. XZ-2009-9) (No. XZ-2009-9)

  • Sulfonated poly(4-vinylpyridine) heteropolyacid salts acted as a heterogeneous catalyst to effectively catalyze the one-pot synthesis of β-amino carbonyl compounds via the Mannich reaction between aromatic aldehydes, aromatic ketone, and aromatic amines. In addition, the catalyst could be easily recovered by the filtration and reused six times without significant loss of catalytic activity.
  • 加载中
    1. [1]

      [1] M. Arend, B. Westermann, N. Risch, Modern variants of the Mannich reaction, Angew. Chem. Int. Ed. 37 (1998) 1044-1070.

    2. [2]

      [2] S. Kobayashi, H. Ishitani, Catalytic enantioselective addition to imines, Chem. Rev. 99 (1999) 1069-1094.

    3. [3]

      [3] R. Muller, H. Goesmann, H. Waldmann, N,N-Phthaloylamino acids as chiral auxiliaries in asymmetric Mannich-type reactions, Angew. Chem. Int. Ed. 38 (1999) 184-187.

    4. [4]

      [4] H. Bohme, M. Haake, in: E.C. Taylor (Ed.), Advances in Organic Chemistry, vol. 7, John Wiley and Sons, New York, 1976, p. 107.

    5. [5]

      [5] M. Suginome, L. Uehlin, M. Murakami, Aminoboranes as "compatible" iminium ion generators in aminative C-C bond formations, J. Am. Chem. Soc. 126 (2004) 13196-13197.

    6. [6]

      [6] W. Notz, F. Tanaka, S.I. Watanabe, et al., The direct organocatalytic asymmetric Mannich reaction: unmodified aldehydes as nucleophiles, J. Org. Chem. 68 (2003) 9624-9634.

    7. [7]

      [7] B.M. Trost, L.R. Terrell, A direct catalytic asymmetric Mannich-type reaction to syn-amino alcohols, J. Am. Chem. Soc. 125 (2003) 338-339.

    8. [8]

      [8] S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, Anti-selective direct catalytic asymmetric Mannich-type reaction of hydroxyketone providing β-amino alcohols, J. Am. Chem. Soc. 125 (2003) 4712-4713.

    9. [9]

      [9] K. Juhl, N. Gathergood, K.A. Jørgensen, Catalytic asymmetric direct Mannich reactions of carbonyl compounds with a-imino esters, Angew. Chem. Int. Ed. 40 (2001) 2995-2997.

    10. [10]

      [10] B. List, The direct catalytic asymmetric three-component Mannich reaction, J. Am. Chem. Soc. 122 (2000) 9336-9337.

    11. [11]

      [11] B. List, P. Pojarliev, W.T. Biller, H.J. Martin, The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohol, J. Am. Chem. Soc. 124 (2002) 827-833.

    12. [12]

      [12] A. Cordova, W. Notz, G. Zhong, J.M. Betancort, C.F. Barbas, A highly enantioselective amino acid-catalyzed route to functionalized α-amino acids, J. Am. Chem. Soc. 124 (2002) 1842-1943.

    13. [13]

      [13] S. Kobayashi, T. Hamada, K. Manabe, The catalytic asymmetric Mannich-type reactions in aqueous media, J. Am. Chem. Soc. 124 (2002) 5640-5641.

    14. [14]

      [14] Y. Hayashi, W. Tsuboi, I. Ashimine, et al., The direct and enantioselective, one-pot, three-component, cross-Mannich reaction of aldehydes, Angew. Chem. Int. Ed. 42 (2003) 3677-3680.

    15. [15]

      [15] A.G. Wenzel, E.N. Jacobsen, Asymmetric catalytic mannich reactions catalyzed by urea derivatives: enantioselective synthesis of b-aryl-β-amino acids, J. Am. Chem. Soc. 124 (2002) 12964-12965.

    16. [16]

      [16] S. Sahoo, T. Joseph, S.B. Halligudi, Mannich reaction in Bro¨nsted acidic ionic liquid: a facile synthesis of β-amino carbonyl compounds, J. Mol. Catal. A: Chem. 244 (2006) 179-182.

    17. [17]

      [17] T. Akiyama, K. Matsuda, K. Fuchibe, HCl-catalyzed stereoselective Mannich reaction in H2O-SDS system, Synlett (2005) 322-324.

    18. [18]

      [18] K. Matsuda, Y. Mori, S. Kobayashi, Three-component carbon-carbon bond-forming reactions catalyzed by a Brønsted acid-surfactant-combined catalyst in water, Tetrahedron 57 (2001) 2537-2544.

    19. [19]

      [19] M.L. Kantam, C.V. Rajasekhar, G. Gopikrishna, K.R. Reddy, B.M. Choudary, Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions, Tetrahedron Lett. 47 (2006) 5965-5967.

    20. [20]

      [20] M.M. Heravi, M. Zakeri, N. Mohammadi, Guanidine hydrochloride: an active and simple catalyst for Mannich type reaction in solvent-free condition, Chin. Chem. Lett. 22 (2011) 797-800.

    21. [21]

      [21] Y. Dai, B.D. Li, H.D. Quan, C.X. Liu, CeCl3·7H2O as an efficient catalyst for one-pot synthesis of β-amino ketones by three-component Mannich reaction, Chin. Chem. Lett. 21 (2010) 31-34.

    22. [22]

      [22] S. Iimura, D. Nobutou, K. Manabe, S. Kobayashi, Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst, Chem. Commun. (2003) 1644-1645.

    23. [23]

      [23] N. Azizi, L. Torkiyan, M.R. Saidi, Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids, Org. Lett. 8 (2006) 2079-2082.

    24. [24]

      [24] R. Wang, B.G. Li, T.K. Huang, L. Shi, X.X. Lu, NbCl5-catalyzed one-pot Mannich-type reaction: three component synthesis of β-amino carbonyl compounds, Tetrahedron Lett. 48 (2007) 2071-2073.

    25. [25]

      [25] L.M. Wang, J.W. Han, J. Sheng, H. Tian, Z.Y. Fan, Rare earth perfluorooctanoate

    26. [26]

      [RE(PFO)3] catalyzed one-pot Mannich reaction: three component synthesis of bamino carbonyl compounds, Catal. Commun. 6 (2005) 201-204.

    27. [27]

      [26] L.M. Wang, J.W. Han, J. Sheng, Z.Y. Fan, H. Tian, Yb(OTf)3 catalyzed Mannich reaction of acetophe-none with aromatic aldehydes and aromatic amines: three component one-pot synthesis of β-amino ketone derivatives, Chin. J. Org. Chem. 25 (2005) 591-594.

    28. [28]

      [27] Y.G. Wang, Y.Y. Yang, W.G. Shou, Synthesis of β-amino carbonyl compounds via a Zn(OTf)2-catalyzed cascade reaction of anilines with aromatic aldehydes and carbonyl compounds, Tetrahedron 62 (2006) 10079-11086.

    29. [29]

      [28] Y.G. Wang, Y.Y. Yang, W.G. Shou, An efficient synthesis of β-amino esters via Zn(OTf)2-catalyzed Mannich-type reaction, Tetrahedron Lett. 47 (2006) 1845- 1847.

    30. [30]

      [29] H. Li, H. Zeng, H. Shao, Bismuth (ⅡI) chloride-catalyzed one-pot Mannich reaction: three-component synthesis of β-amino carbonyl compounds, Tetrahedron Lett. 50 (2009) 6858-6860.

    31. [31]

      [30] Z. Li, X.L. Ma, J. Liu, et al., Silica-supported aluminum chloride: a recyclable and reusable catalyst for one-pot three-component Mannich-type reactions, J. Mol. Catal. A: Chem. 272 (2007) 132-135.

    32. [32]

      [31] H. Wu, Y. Shen, L. Fan, et al., Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid, Tetrahedron 63 (2007) 2404-2408.

    33. [33]

      [32] X.C. Wang, L.J. Zhang, Z. Zhang, Z.J. Quan, PEG-OSO3H as an efficient and recyclable catalyst for the synthesis of β-amino carbonyl compounds via the Mannich reaction in PEG-H2O, Chin. Chem. Lett. 23 (2012) 423-426.

    34. [34]

      [33] Q.H. Zhang, S.G. Zhang, Y.Q. Deng, Recent advances in ionic liquid catalysis, Green Chem. 13 (2011) 2619-2637.

    35. [35]

      [34] D. Chaturvedi, Recent developments on task specific ionic liquids, Curr. Org. Chem. 15 (2011) 1236-1248.

    36. [36]

      [35] J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev. 111 (2011) 3508-3576.

    37. [37]

      [36] L. Gharnati, O. Walter, U. Arnold, M. Döring, Guanidinium-based phosphotungstates and ionic liquids as catalysts and solvents for the epoxidation of olefins with hydrogen peroxide, Eur. J. Inorg. Chem. (2011) 2756-2762.

    38. [38]

      [37] H. Li, Y.X. Qiao, L. Hua, et al., Imidazolium polyoxometalate: an ionic liquid catalyst for esterification and oxidative esterification, Chem. Cat. Chem. 2 (2010) 1165-1170.

    39. [39]

      [38] Y.X. Qiao, Z.S. Hou, H. Li, et al., Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phase-separation catalysts for olefin epoxidation, Green Chem. 11 (2009) 1955-1960.

    40. [40]

      [39] Y. Leng, J. Wang, D. Zhu, et al., Heteropolyanion-based ionic liquids: reactioninduced self-separation catalysts for esterification, Angew. Chem. Int. Ed. 48 (2009) 168-171.

    41. [41]

      [40] Y.Leng,J.Wang,D.Zhu,Y.Wu,P.Zhao,Sulfonatedorganicheteropolyacidsalts:recyclable green solid catalysts for esterifications, J.Mol. Catal. A: Chem. 313 (2009) 1-6.

    42. [42]

      [41] W. Zhang, Y. Leng, D. Zhu, Y. Wu, J. Wang, Phosphotungstic acid salt of triphenyl( 3-sulfopropyl)phosphonium: an efficient and reusable solid catalyst for esterification, Catal. Commun. 11 (2009) 151-154.

    43. [43]

      [42] Y. Leng, P.P. Jiang, J. Wang, A novel Brønsted acidic heteropolyanion-based polymeric hybrid catalyst for esterification, Catal. Commun. 25 (2012) 41-44.

    44. [44]

      [43] J. Yuan, M. Antonietti, Poly(ionic liquid)s: polymers expanding classical property profiles, Polymer 52 (2011) 1469-1482.

    45. [45]

      [44] Z.J. Xu, H. Wan, J.M. Miao, M.J. Han, C. Yang, G.F. Guan, Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications, J. Mol. Catal. A: Chem. 332 (2010) 152-157.

    46. [46]

      [45] K.M. Docherty, J.K. Dixon, C.F. Kulpa, Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community, Biodegradation 18 (2007) 481-493.

    47. [47]

      [46] J.K. Wang, Y.X. Zong, R.G. Fu, Y.Y. Niu, G.R. Yue, Z.J. Quan, X.C. Wang, Y. Pan, Poly(4- vinylpyridine) supported acidic ionic liquid: a novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones under ultrasonic irradiation, Ultrason. Sonochem. 21 (2014) 29-34.

    48. [48]

      [47] Y.X. Zong, Y. Zhao, W.C. Luo, X.H. Yu, J.K. Wang, Y. Pan, Highly efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropoly acids in water, Chin. Chem. Lett. 21 (2010) 778-781.

    49. [49]

      [48] Y.X. Zong, J.K. Wang, Y.Y. Niu, Z.L. Li, Z.E. Song, Z.J. Quan, X.C. Wang, G.R. Yue, Y. Pan, PEG-SO3H as an efficient and reusable catalyst for chemoselective synthesis of 1,1-diacetates, Chin. Chem. Lett. 24 (2013) 140-142.

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    9. [9]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    10. [10]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    11. [11]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    12. [12]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    13. [13]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    14. [14]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    15. [15]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    16. [16]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    17. [17]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(0)
  • Abstract views(542)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return