SnS2基异质结构:光催化和气体传感应用的研究进展

刘静静 魏骜琦 张豪 多树旺

引用本文: 刘静静, 魏骜琦, 张豪, 多树旺. SnS2基异质结构:光催化和气体传感应用的研究进展[J]. 物理化学学报, 2025, 41(12): 100185. doi: 10.1016/j.actphy.2025.100185 shu
Citation:  Jingjing Liu, Aoqi Wei, Hao Zhang, Shuwang Duo. SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications[J]. Acta Physico-Chimica Sinica, 2025, 41(12): 100185. doi: 10.1016/j.actphy.2025.100185 shu

SnS2基异质结构:光催化和气体传感应用的研究进展

    通讯作者: 刘静静, liujingjing1125@163.com; 多树旺, dsw@jxstnu.edu.cn
  • 基金项目:

    国家自然科学基金 22368022

    江西省自然科学基金 20242BAB20087

    江西科技师范大学博士科研启动基金 2022BSQD01

摘要: 近年来,二硫化锡(SnS2)基异质结因其理想带隙(2.0–2.3 eV)、卓越稳定性、环境友好性及优异表面反应活性,在光催化和传感领域展现出巨大应用潜力。尽管优势显著,但目前对该新兴领域的系统性综述仍较为缺乏。本文首先概述了SnS2异质结构的前沿合成策略,继而重点评述其在析氢反应、环境修复和过氧化氢合成等关键应用中的光催化性能表现。随后分析了其气体传感特性,特别聚焦二氧化氮和氨气的检测。机理研究表明,性能提升源于定制的异质结设计:S型异质结显著促进光催化中的电荷分离;n-n/p-n结优化了传感应用中的活性位点分布与气体吸附。SnS2与耦合半导体间的界面协同作用被确认为性能提升的关键因素。最后,本文提出了结论、展望及未来挑战。

English

    1. [1]

      X. Guo, F. Zhang, Y. Zhang, J. Hu, J. Mater. Chem. A 11 (2023) 7331, https://doi.org/10.1039/d2ta09741a. doi: 10.1039/d2ta09741a

    2. [2]

      M. Xiao, D. Qi, H. Sun, Y. Meng, F. Zhu, Inorg. Chem. Front. 11 (2024) 4107, https://doi.org/10.1039/d4qi00688g. doi: 10.1039/d4qi00688g

    3. [3]

      A. Taufik, R. Saleh, G. Seong, Nanoscale 16 (2024) 9680, https://doi.org/10.1039/d4nr00706a. doi: 10.1039/d4nr00706a

    4. [4]

      D. Sun, W. Wang, Y. Fan, Y. Chen, S. Ruan, J. Alloy. Compd. 1014 (2025) 178738, https://doi.org/10.1016/j.jallcom.2025.178738. doi: 10.1016/j.jallcom.2025.178738

    5. [5]

      P. Haghighi, F. Haghighat, Build. Environ. 249 (2024) 111108, https://doi.org/10.1016/j.buildenv.2023.111108. doi: 10.1016/j.buildenv.2023.111108

    6. [6]

      Y. Le, H. Wang, Bioresour. Technol. 426 (2025) 132379, https://doi.org/10.1016/j.biortech.2025.132379. doi: 10.1016/j.biortech.2025.132379

    7. [7]

      D. Zhang, X. Zong, Z. Wu, Sens. Actuators B Chem. 287 (2019) 398, https://doi.org/10.1016/j.snb.2019.01.123. doi: 10.1016/j.snb.2019.01.123

    8. [8]

      Y. Peng, M. Zhang, W. Zhao, Y. Lin, Z. Jiang, A. Du, J. Phys. Chem. Lett. 15 (2024) 2740, https://doi.org/10.1021/acs.jpclett.4c00200. doi: 10.1021/acs.jpclett.4c00200

    9. [9]

      R. K. Rai, N. Goyal, D. Sharma, R. Ram, K. Jagadish, N. Bhat, N. Ravishankar, Chem. Mater. 37 (2025) 441, https://doi.org/10.1021/acs.chemmater.4c02821. doi: 10.1021/acs.chemmater.4c02821

    10. [10]

      A. Mohanty, K. Kamali, ACS Appl. Nano Mater. 7 (2024) 3326, https://doi.org/10.1021/acsanm.3c05750. doi: 10.1021/acsanm.3c05750

    11. [11]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668. doi: 10.1002/adma.202107668

    12. [12]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121. doi: 10.1016/j.actphy.2025.100121

    14. [14]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012. doi: 10.1016/j.mattod.2024.11.012

    15. [15]

      X. Gao, Y. Liu, M. Yuan, Y. Qu, Y. Tan, F. Chen, Appl. Surf. Sci. 606 (2022) 155007, https://doi.org/10.1016/j.apsusc.2022.155007. doi: 10.1016/j.apsusc.2022.155007

    16. [16]

      R. Wu, T. Xin, Y. Wang, T. Wang, L. Liu, J. Hao, J. Mater. Chem. A 10 (2022) 14810, https://doi.org/10.1039/d2ta03333j. doi: 10.1039/d2ta03333j

    17. [17]

      T. Wang, Y. Wang, W. Fan, R. Wu, Q. Liang, J. Hao, J. Hazard. Mater. 434 (2022) 128782, https://doi.org/10.1016/j.jhazmat.2022.128782. doi: 10.1016/j.jhazmat.2022.128782

    18. [18]

      M. Shafiei, J. Bradford, H. Khan, C. Piloto, W. Wlodarski, Y. Li, N. Motta, Appl. Surf. Sci. 462 (2018) 330, https://doi.org/10.1016/j.apsusc.2018.08.115. doi: 10.1016/j.apsusc.2018.08.115

    19. [19]

      Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang, Y. Yang, L. Xie, D. Chen, Y. Long, J. Chen, et al., ACS Nano 10 (2016) 755, https://doi.org/10.1021/acsnano.5b05823. doi: 10.1021/acsnano.5b05823

    20. [20]

      S. Kim, J. H. Bang, M. S. Choi, W. Oum, A. Mirzaei, N. Lee, H. -C. Kwon, D. Lee, H. Jeon, S. S. Kim, et al., Met. Mater. Int. 25 (2018) 805, https://doi.org/10.1007/s12540-018-00219-6. doi: 10.1007/s12540-018-00219-6

    21. [21]

      J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, W. Zheng, CrystEngComm 14 (2012) 832, https://doi.org/10.1039/c1ce05831b. doi: 10.1039/c1ce05831b

    22. [22]

      P. Bharathi, S. Harish, M. Shimomura, M. K. Mohan, J. Archana, M. Navaneethan, Chemosphere 346 (2024) 140486, https://doi.org/10.1016/j.chemosphere.2023.140486. doi: 10.1016/j.chemosphere.2023.140486

    23. [23]

      H. Zhao, J. Lv, X. Ma, B. Huang, L. Han, X. Kang, D. Wang, H. Fang, Sens. Actuator B Chem. 429 (2025) 137318, https://doi.org/10.1016/j.snb.2025.137318. doi: 10.1016/j.snb.2025.137318

    24. [24]

      L. Zhang, J. Xu, X. Lei, H. Sun, T. Ai, F. Ma, P. K. Chu, Sens. Actuator B Chem. 433 (2025) 137565, https://doi.org/10.1016/j.snb.2025.137565. doi: 10.1016/j.snb.2025.137565

    25. [25]

      D. Xu, W. Jia, X. Duan, T. Yu, H. Chen, Y. Ma, J. He, J. Wang, R. Yan, W. Zhao, Ceram. Int. 51 (2025) 3568, https://doi.org/10.1016/j.ceramint.2024.11.333. doi: 10.1016/j.ceramint.2024.11.333

    26. [26]

      J. Guo, C. Wang, X. Chang, W. Zheng, J. Zhang, X. Liu, ACS Appl. Electron. Mater. 7 (2025) 3552, https://doi.org/10.1021/acsaelm.5c00285. doi: 10.1021/acsaelm.5c00285

    27. [27]

      W. Jia, D. Xu, X. Duan, R. Li, B. Sun, R. Yan, W. Zhao, Ceram. Int. 50 (2024) 25832, https://doi.org/10.1016/j.ceramint.2024.04.320. doi: 10.1016/j.ceramint.2024.04.320

    28. [28]

      X. Xu, S. Dong, J. Lv, G. Huang, Q. Chen, J. Bi, Appl. Surf. Sci. 689 (2025) 162489, https://doi.org/10.1016/j.apsusc.2025.162489. doi: 10.1016/j.apsusc.2025.162489

    29. [29]

      Z. Lei, W. Wang, T. Sun, E. Liu, T. Gao, J. Mater. Sci. Technol. 216 (2025) 81, https://doi.org/10.1016/j.jmst.2024.07.034. doi: 10.1016/j.jmst.2024.07.034

    30. [30]

      S. Leonardi, W. Wlodarski, Y. Li, N. Donato, A. Bonavita, G. Neri, J. Alloy. Compd. 781 (2019) 440, https://doi.org/10.1016/j.jallcom.2018.12.110. doi: 10.1016/j.jallcom.2018.12.110

    31. [31]

      D. Gu, X. Li, Y. Zhao, J. Wang, Sens. Actuator B Chem. 244 (2017) 67, https://doi.org/10.1016/j.snb.2016.12.125. doi: 10.1016/j.snb.2016.12.125

    32. [32]

      X. Jiang, Y. Zhen, Y. Feng, Z. Yang, Z. Qin, J. Alloy. Compd. 938 (2023) 168520, https://doi.org/10.1016/j.jallcom.2022.168520. doi: 10.1016/j.jallcom.2022.168520

    33. [33]

      M. Li, X. Gao, Y. Zhang, Y. Zheng, Z. Lin, G. Wei, IEEE Sens. J. 22 (2022) 23456, https://doi.org/10.1109/jsen.2022.3215156. doi: 10.1109/jsen.2022.3215156

    34. [34]

      K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, ACS Appl. Mater. Inter. 7 (2015) 11359, https://doi.org/10.1021/acsami.5b01856. doi: 10.1021/acsami.5b01856

    35. [35]

      Y. Qin, S. Chen, Y. Bai, ACS Appl. Electron. Mater. 4 (2022) 158, https://doi.org/10.1021/acsaelm.1c00911. doi: 10.1021/acsaelm.1c00911

    36. [36]

      A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, App. Catal. B Environ. 289 (2021) 120039, https://doi.org/10.1016/j.apcatb.2021.120039. doi: 10.1016/j.apcatb.2021.120039

    37. [37]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5. doi: 10.1038/s41467-024-45604-5

    38. [38]

      J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, J. Chin. J. Catal. 42 (2021) 56, https://doi.org/10.1016/s1872-2067(20)63634-8. doi: 10.1016/s1872-2067(20)63634-8

    39. [39]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6. doi: 10.1038/s41467-024-53951-6

    40. [40]

      B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988, https://doi.org/10.1016/j.jmat.2021.02.015. doi: 10.1016/j.jmat.2021.02.015

    41. [41]

      R. Xiong, Y. Song, K. Li, Y. Xiao, B. Cheng, S. Lei, J. Mater. Chem. A 11 (2023) 18398, https://doi.org/10.1039/d3ta03003b. doi: 10.1039/d3ta03003b

    42. [42]

      X. Chen, Z. Han, Z. Lu, T. Qu, C. Liang, Y. Wang, B. Zhang, X. Han, P. Xu, Sustain. Energ. Fuels 7 (2023) 1311, https://doi.org/10.1039/d2se01717b. doi: 10.1039/d2se01717b

    43. [43]

      P. A. K. Reddy, H. Han, K. C. Kim, S. Bae, ACS Sustain. Chem. Eng. 12 (2024) 4979, https://doi.org/10.1021/acssuschemeng.3c08378. doi: 10.1021/acssuschemeng.3c08378

    44. [44]

      C. Zhang, J. Ma, H. Zhu, H. Ding, H. Wu, K. Zhang, X. Zhao, X. Wang, C. Cheng, J. Alloy. Compd. 960 (2023) 170932, https://doi.org/10.1016/j.jallcom.2023.170932. doi: 10.1016/j.jallcom.2023.170932

    45. [45]

      K. S. Ranjith, R. Maleki, S. M. Ghoreishian, A. Mohammadi, G. S. Rama Raju, Y. S. Huh, Y. -K. Han, J. Mater. Chem. A 12 (2024) 33818, https://doi.org/10.1039/d4ta05970k. doi: 10.1039/d4ta05970k

    46. [46]

      R. Bariki, Y. P. Bhoi, S. K. Pradhan, S. Panda, S. K. Nayak, K. Das, D. Majhi, B. G. Mishra, Sep. Purif. Technol. 324 (2023) 124509, https://doi.org/10.1016/j.seppur.2023.124509. doi: 10.1016/j.seppur.2023.124509

    47. [47]

      T. Song, X. Zhang, Q. Che, P. Yang, J. Ind. Eng. Chem. 113 (2022) 389, https://doi.org/10.1016/j.jiec.2022.06.014. doi: 10.1016/j.jiec.2022.06.014

    48. [48]

      Y. Cheng, J. He, P. Yang, Colloids Surf. A 680 (2024) 132678, https://doi.org/10.1016/j.colsurfa.2023.132678. doi: 10.1016/j.colsurfa.2023.132678

    49. [49]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001. doi: 10.1016/j.jmst.2024.12.001

    50. [50]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975. doi: 10.1016/j.jmat.2024.100975

    51. [51]

      Y. Jiang, M. Li, X. Zhao, Y. Han, Y. Zhou, Z. Li, L. Tian, P. Fu, Y. Chen, J. Li, J. Mater. Eng. Perform. (2024) Early Access, https://doi.org/10.1007/s11665-024-10067-8.

    52. [52]

      Y. Li, W. Zhang, N. Sun, W. Zhang, J. Chen, T. Huang, Q. Wang, J. Zhang, Y. Jiang, Colloids Surf. A 705 (2025) 135604, https://doi.org/10.1016/j.colsurfa.2024.135604. doi: 10.1016/j.colsurfa.2024.135604

    53. [53]

      T. H. Nguyen Thi, H. T. Huu, H. N. Phi, V. P. Nguyen, Q. D. Le, L. N. Thi, T. T. Trang Phan, V. Vo, J. Sci-Adv Mater. Dev. 7 (2022) 100402, https://doi.org/10.1016/j.jsamd.2021.11.004. doi: 10.1016/j.jsamd.2021.11.004

    54. [54]

      S. Ding, W. Gan, J. Guo, R. Chen, R. Liu, Z. Zhao, J. Li, M. Zhang, Z. Sun, J. Mater. Chem. C 12 (2024) 7079, https://doi.org/10.1039/d4tc00972j. doi: 10.1039/d4tc00972j

    55. [55]

      W. Ren, J. Yang, W. Chen, J. Zhang, Y. Sun, Y. Zheng, H. Zhao, B. Liang, Mater. Res. Bull. 153 (2022) 111884, https://doi.org/10.1016/j.materresbull.2022.111884. doi: 10.1016/j.materresbull.2022.111884

    56. [56]

      T. Lu, Y. Gao, Y. Yang, H. Ming, Z. Huang, G. Liu, D. Zheng, J. Zhang, Y. Hou, Chemosphere 283 (2021) 131256, https://doi.org/10.1016/j.chemosphere.2021.131256. doi: 10.1016/j.chemosphere.2021.131256

    57. [57]

      J. J. López‐Peñalver, M. Sánchez-Polo, C. V. Gómez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 85 (2010) 1325, https://doi.org/10.1002/jctb.2435. doi: 10.1002/jctb.2435

    58. [58]

      Q. Li, L. Wang, J. Song, Y. Huang, G. Xie, Y. Liu, H. Li, Arab. J. Chem. 16 (2023) 105081, https://doi.org/10.1016/j.arabjc.2023.105081. doi: 10.1016/j.arabjc.2023.105081

    59. [59]

      X. Zheng, M. Xu, C. Cai, Y. Yuan, F. Lin, W. Chen, F. Yang, J. Alloy. Compd. 980 (2024) 173630, https://doi.org/10.1016/j.jallcom.2024.173630. doi: 10.1016/j.jallcom.2024.173630

    60. [60]

      L. Shi, Z. Chang, Y. Wu, X. Tang, P. Jiang, Y. Hua, Q. Shi, J. Xie, Chem. Eng. J. 507 (2025) 160563, https://doi.org/10.1016/j.cej.2025.160563. doi: 10.1016/j.cej.2025.160563

    61. [61]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    62. [62]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985. doi: 10.1016/j.jmat.2024.100985

    63. [63]

      F. You, Y. Zhou, D. Li, H. Zhang, D. Gao, X. Ma, R. Hao, J. Liu, J Colloid Interf. Sci. 629 (2023) 871, https://doi.org/10.1016/j.jcis.2022.09.134. doi: 10.1016/j.jcis.2022.09.134

    64. [64]

      S. Yin, L. Sun, Y. Zhou, X. Li, J. Li, X. Song, P. Huo, H. Wang, Y. Yan, Chem. Eng. J. 406 (2021) 126776, https://doi.org/10.1016/j.cej.2020.126776. doi: 10.1016/j.cej.2020.126776

    65. [65]

      J. Sun, Y. Qu, G. Wang, Chem. Eng. J. 514 (2025) 163147, https://doi.org/10.1016/j.cej.2025.163147. doi: 10.1016/j.cej.2025.163147

    66. [66]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    67. [67]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/pku.whxb202307016. doi: 10.3866/pku.whxb202307016

    68. [68]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. (2025) 2505088, https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    69. [69]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    70. [70]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/s1872-2067(24)60102-6. doi: 10.1016/s1872-2067(24)60102-6

    71. [71]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    72. [72]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 37 (2025) e202505456, https://doi.org/10.1002/anie.202505456. doi: 10.1002/anie.202505456

    73. [73]

      X. Luan, Z. Yu, J. Zi, F. Gao, Z. Lian, Adv. Funct. Mater. 33 (2023) 2304259, https://doi.org/10.1002/adfm.202304259. doi: 10.1002/adfm.202304259

    74. [74]

      Y. Liu, P. Chen, Y. Chen, H. Lu, J. Wang, Z. Yang, Z. Lu, M. Li, L. Fang, RSC Adv. 6 (2016) 10802, https://doi.org/10.1039/c5ra21506d. doi: 10.1039/c5ra21506d

    75. [75]

      H. Yang, C. Zhu, Q. Wu, X. Li, H. Wang, J. Wan, C. Xie, D. Zeng, Appl. Surf. Sci. 601 (2022) 154213, https://doi.org/10.1016/j.apsusc.2022.154213. doi: 10.1016/j.apsusc.2022.154213

    76. [76]

      B. Zhang, Z. Zhang, C. Wang, B. Zhang, S. Zhang, N. Luo, H. Bala, Y. Wang, ACS Appl. Nano Mater. 7 (2024) 28457, https://doi.org/10.1021/acsanm.4c05580. doi: 10.1021/acsanm.4c05580

    77. [77]

      Q. Sun, Y. Li, J. Hao, S. Zheng, T. Zhang, T. Wang, R. Wu, H. Fang, Y. Wang, ACS Appl. Mater. Inter. 13 (2021) 54152, https://doi.org/10.1021/acsami.1c16095. doi: 10.1021/acsami.1c16095

    78. [78]

      T. Wang, J. Liu, Y. Zhang, Q. Liang, R. Wu, H. -S. Tsai, Y. Wang, J. Hao, J. Mater. Chem. A 10 (2022) 4306, https://doi.org/10.1039/d1ta10461f. doi: 10.1039/d1ta10461f

    79. [79]

      L. Ma, X. Zhang, J. Wang, M. Ikram, M. Ullah, H. Lv, H. Wu, K. Shi, New J. Chem. 44 (2020) 8650, https://doi.org/10.1039/d0nj01005g. doi: 10.1039/d0nj01005g

    80. [80]

      Q. Sun, J. Hao, S. Zheng, P. Wan, J. Li, D. Zhang, Y. Li, T. Wang, Y. Wang, Nanotechnology 31 (2020) 425502, https://doi.org/10.1088/1361-6528/aba05b. doi: 10.1088/1361-6528/aba05b

    81. [81]

      Y. Yang, D. Zhang, D. Wang, Z. Xu, J. Zhang, J. Mater. Chem. A 9 (2021) 14495, https://doi.org/10.1039/d1ta03739k. doi: 10.1039/d1ta03739k

    82. [82]

      M. Zhang, Y. Li, G. Meng, Z. Liu, Y. Wang, X. Song, J. Tan, Appl. Surf. Sci. 657 (2024) 159778, https://doi.org/10.1016/j.apsusc.2024.159778. doi: 10.1016/j.apsusc.2024.159778

    83. [83]

      L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv, M. Ullah, M. Khan, H. Yu, K. Shi, J. Hazard. Mater. 393 (2020) 122325, https://doi.org/10.1016/j.jhazmat.2020.122325. doi: 10.1016/j.jhazmat.2020.122325

    84. [84]

      L. Tang, K. Zhou, H. Su, J. Tang, Q. Wu, L. Luo, X. Guo, D. Zeng, ACS Appl. Nano Mater. 8 (2025) 4636, https://doi.org/10.1021/acsanm.4c07128. doi: 10.1021/acsanm.4c07128

    85. [85]

      S. Zheng, Y. Li, J. Hao, H. Fang, Y. Yuan, H. -S. Tsai, Q. Sun, P. Wan, X. Zhang, Y. Wang, Appl. Surf. Sci. 568 (2021) 150926, https://doi.org/10.1016/j.apsusc.2021.150926. doi: 10.1016/j.apsusc.2021.150926

    86. [86]

      Y. Huang, W. Jiao, Z. Chu, S. Wang, L. Chen, X. Nie, R. Wang, X. He, ACS Appl. Mater. Inter. 12 (2020) 997, https://doi.org/10.1021/acsami.9b14952. doi: 10.1021/acsami.9b14952

    87. [87]

      M. Cheng, Z. Wu, G. Liu, L. Zhao, Y. Gao, B. Zhang, F. Liu, X. Yan, X. Liang, P. Sun, et al., Sens. Actuator B Chem. 291 (2019) 216, https://doi.org/10.1016/j.snb.2019.04.074. doi: 10.1016/j.snb.2019.04.074

    88. [88]

      C. Kim, J. C. Park, S. Y. Choi, Y. Kim, S. Y. Seo, T. E. Park, S. H. Kwon, B. Cho, J. H. Ahn, Small 14 (2018) 1704116, https://doi.org/10.1002/smll.201704116. doi: 10.1002/smll.201704116

    89. [89]

      Y. Huang, W. Jiao, Z. Chu, X. Nie, R. Wang, X. He, ACS Appl. Mater. Inter. 12 (2020) 25178, https://doi.org/10.1021/acsami.0c05240. doi: 10.1021/acsami.0c05240

    90. [90]

      T. Chen, W. Yan, Y. Wang, J. Li, H. Hu, D. Ho, J. Mater. Chem. C 9 (2021) 7407, https://doi.org/10.1039/d1tc00197c. doi: 10.1039/d1tc00197c

    91. [91]

      Y. Huang, W. Jiao, Z. Chu, G. Ding, M. Yan, X. Zhong, R. Wang, J. Mater. Chem. C 7 (2019) 8616, https://doi.org/10.1039/c9tc02436k. doi: 10.1039/c9tc02436k

    92. [92]

      I. S. Saggu, S. Singh, K. Chen, Z. Xuan, M. T. Swihart, S. Sharma, ACS Sens. 8 (2023) 243, https://doi.org/10.1021/acssensors.2c02104. doi: 10.1021/acssensors.2c02104

    93. [93]

      D. Liu, Z. Tang, Z. Zhang, Sens. Actuator B Chem. 324 (2020) 128754, https://doi.org/10.1016/j.snb.2020.128754. doi: 10.1016/j.snb.2020.128754

    94. [94]

      Q. Wu, Z. Feng, Z. Wang, Z. Peng, L. Zhang, Y. Li, Talanta 253 (2023) 124063, https://doi.org/10.1016/j.talanta.2022.124063. doi: 10.1016/j.talanta.2022.124063

    95. [95]

      H. Yuan, S. A. A. A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, Y. Gu, et al., Adv. Mater. 31 (2019) 1807161, https://doi.org/10.1002/adma.201807161. doi: 10.1002/adma.201807161

    96. [96]

      C. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang, C. Xia, T. Bao, J. Wan, R. Huang, J. Zou, et al., Nat. Commun. 11 (2020) 4971, https://doi.org/10.1038/s41467-020-18776-z. doi: 10.1038/s41467-020-18776-z

    97. [97]

      A. Ali, H. H. D. AlTakroori, Y. E. Greish, A. Alzamly, L. A. Siddig, N. Qamhieh, S. T. Mahmoud, Nanomaterials 12 (2022) 913, https://doi.org/10.3390/nano12060913. doi: 10.3390/nano12060913

    98. [98]

      Y. Huang, X. Zhang, S. Liu, R. Wang, J. Guo, Y. Chen, X. Ma, Chem. Eng. J. 458 (2023) 141364, https://doi.org/10.1016/j.cej.2023.141364. doi: 10.1016/j.cej.2023.141364

    99. [99]

      S. Tiwari, A. K. Singh, L. Joshi, P. Chakrabarti, W. Takashima, K. Kaneto, R. Prakash, Sens. Actuator B Chem. 171 (2012) 962, https://doi.org/10.1016/j.snb.2012.06.010. doi: 10.1016/j.snb.2012.06.010

    100. [100]

      K. Besar, S. Yang, X. Guo, W. Huang, A. M. Rule, P. N. Breysse, I. J. Kymissis, H. E. Katz, Org. Electron. 15 (2014) 3221, https://doi.org/10.1016/j.orgel.2014.08.023. doi: 10.1016/j.orgel.2014.08.023

    101. [101]

      J. M. McEnaney, A. R. Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Nørskov, Energ. Environ. Sci. 10 (2017) 1621, https://doi.org/10.1039/c7ee01126a. doi: 10.1039/c7ee01126a

    102. [102]

      T. He, S. Sun, B. Huang, X. Li, ACS Appl. Mater. Inter. 15 (2023) 4194, https://doi.org/10.1021/acsami.2c18097. doi: 10.1021/acsami.2c18097

    103. [103]

      X. Dong, Q. Han, Y. Kang, H. Li, X. Huang, Z. Fang, H. Yuan, A. A. Elzatahry, Z. Chi, G. Wu, et al., Chin. Chem. Lett. 33 (2022) 567, https://doi.org/10.1016/j.cclet.2021.06.022. doi: 10.1016/j.cclet.2021.06.022

    104. [104]

      J. Bai, Y. Shen, S. Zhao, A. Li, Z. Kang, B. Cui, D. Wei, Z. Yuan, F. Meng, Adv. Mater. Tec. 8 (2023) 2201671, https://doi.org/10.1002/admt.202201671. doi: 10.1002/admt.202201671

    105. [105]

      M. Li, W. Li, Vacuum 239 (2025) 114401, https://doi.org/10.1016/j.vacuum.2025.114401. doi: 10.1016/j.vacuum.2025.114401

    106. [106]

      Q. Zhang, S. Ma, R. Zhang, K. Zhu, Y. Tie, S. Pei, J. Alloy. Compd. 807 (2019) 151650, https://doi.org/10.1016/j.jallcom.2019.151650. doi: 10.1016/j.jallcom.2019.151650

    107. [107]

      C. Liang, P. Li, S. Yu, Q. Jing, Y. Niu, J. Alloy. Compd. 1022 (2025) 179906, https://doi.org/10.1016/j.jallcom.2025.179906. doi: 10.1016/j.jallcom.2025.179906

    108. [108]

      R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang, D. Chen, G. Shen, RSC Adv. 7 (2017) 52503, https://doi.org/10.1039/c7ra10537a. doi: 10.1039/c7ra10537a

    109. [109]

      F. Li, Z. Zeng, M. Wu, L. Liu, W. Li, F. Huang, W. Li, H. Guan, W. Geng, New J. Chem. 46 (2022) 15701, https://doi.org/10.1039/d2nj02683j. doi: 10.1039/d2nj02683j

    110. [110]

      W. -D. Liu, Y. Xiong, A. Shen, X. -Z. Wang, X. Chang, W. -B. Lu, J. Tian, Rare Metals 43 (2024) 2339, https://doi.org/10.1007/s12598-023-02603-7. doi: 10.1007/s12598-023-02603-7

    111. [111]

      X. Xu, S. Ma, X. Xu, S. Pei, T. Han, W. Liu, J. Alloy. Compd. 868 (2021) 159286, https://doi.org/10.1016/j.jallcom.2021.159286. doi: 10.1016/j.jallcom.2021.159286

    112. [112]

      C. Wang, B. Zhang, B. Zhang, Z. Zhang, M. Chen, S. Zhang, H. Bala, Z. Zhang, Sens. Actuator B Chem. 417 (2024) 136118, https://doi.org/10.1016/j.snb.2024.136118. doi: 10.1016/j.snb.2024.136118

    113. [113]

      Y. Zhang, X. Cheng, X. Zhang, Z. Major, Y. Xu, S. Gao, H. Zhao, L. Huo, Appl. Surf. Sci. 505 (2020) 144533, https://doi.org/10.1016/j.apsusc.2019.144533. doi: 10.1016/j.apsusc.2019.144533

    114. [114]

      D. -H. Kim, J. -W. Jung, S. -J. Choi, J. -S. Jang, W. -T. Koo, I. -D. Kim, Kim, Sens. Actuator B Chem. 273 (2018) 1269, https://doi.org/10.1016/j.snb.2018.07.002. doi: 10.1016/j.snb.2018.07.002

    115. [115]

      Y. Han, Y. Ding, W. Zhang, H. Zhuang, Z. Wang, Z. Li, Z. Zhu, Sens. Actuator B Chem. 381 (2023) 133360, https://doi.org/10.1016/j.snb.2023.133360. doi: 10.1016/j.snb.2023.133360

    116. [116]

      W. Liu, Y. Xiong, A. Shen, X. Wang, X. Chang, W. Lu, J. Tian, Rare Metals 43 (2024) 2339, https://doi.org/10.1007/s12598-023-02603-7. doi: 10.1007/s12598-023-02603-7

    117. [117]

      J. Liu, B. Zhu, L. Zhang, J. Fan, J. Yu, J Colloid Interf. Sci. 600 (2021) 898, https://doi.org/10.1016/j.jcis.2021.05.082. doi: 10.1016/j.jcis.2021.05.082

    118. [118]

      J. Liu, L. Zhang, B. Cheng, J. Fan, J. Yu, J. Hazard. Mater. 413 (2021) 125352, https://doi.org/10.1016/j.jhazmat.2021.125352. doi: 10.1016/j.jhazmat.2021.125352

    119. [119]

      J. Liu, L. Zhang, J. Fan, B. Zhu, J. Yu, Sens. Actuator B Chem. 331 (2021) 129425, https://doi.org/10.1016/j.snb.2020.129425. doi: 10.1016/j.snb.2020.129425

    120. [120]

      X. Meng, M. Bi, Q. Xiao, W. Gao, Sens. Actuator B Chem. 359 (2022) 131612, https://doi.org/10.1016/j.snb.2022.131612. doi: 10.1016/j.snb.2022.131612

    121. [121]

      J. Liu, Y. Peng, B. Zhu, Y. Li, L. Zhang, J. Yu, Sens. Actuator B Chem. 357 (2022) 131366, https://doi.org/10.1016/j.snb.2022.131366. doi: 10.1016/j.snb.2022.131366

    122. [122]

      Y. Peng, B. Cheng, L. Zhang, J. Liu, J. Yu, Sens. Actuator B Chem. 385 (2023) 133700, https://doi.org/10.1016/j.snb.2023.133700. doi: 10.1016/j.snb.2023.133700

    123. [123]

      J. Liu, L. Zhang, J. Fan, J. Yu, Small 18 (2022) 2104984, https://doi.org/10.1002/smll.202104984. doi: 10.1002/smll.202104984

    124. [124]

      J. He, X. Qi, J. Liu, H. Zhang, Z. Wang, D. Li, S. Duo, J. Alloy. Compd. 1013 (2025) 178511, https://doi.org/10.1016/j.jallcom.2025.178511. doi: 10.1016/j.jallcom.2025.178511

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  21
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-12-15
  • 收稿日期:  2025-08-10
  • 接受日期:  2025-09-08
  • 修回日期:  2025-09-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章