Citation: Zhenhuan Wang, Weifei Wei, Ruijie Ma, Dou Luo, Zhanxiang Chen, Jun Zhang, Liyang Yu, Gang Li, Zhenghui Luo. Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100182. doi: 10.1016/j.actphy.2025.100182 shu

Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility

  • Corresponding author: Zhenghui Luo, zhhuiluo@szu.edu.cn
  • Received Date: 9 July 2025
    Revised Date: 24 August 2025
    Accepted Date: 4 September 2025

  • The design of high-performance small-molecule acceptors (SMAs) for organic solar cells (OSCs) remains a central challenge, particularly under the growing demand for environmentally friendly processing conditions. While halogenation has been widely employed to optimize electronic structures and molecular packing, its reliance on toxic halogenated solvents and the limited tunability of intermolecular interactions highlight the need for alternative strategies. In this context, core functionalization with cyano (CN) groups provides a unique opportunity, as the CN unit combines strong electron-withdrawing ability, high polarity, and linear geometry, potentially offering synergistic regulation of both optoelectronic properties and supramolecular assembly. However, systematic studies on core cyanation remain scarce, and its precise role in balancing charge transfer, molecular ordering, and energy loss in OSCs has not been thoroughly clarified.Here, we report a cyano-functionalized benzo[a]phenazine (BP)-core SMA, denoted as NA8, to explore how core cyanation influences device performance. The introduction of the CN group reduces the intramolecular charge transfer, resulting in a blue-shifted absorption and a slightly enlarged optical bandgap compared with the non-cyanated analogue NA1. Despite this apparent drawback, NA8 demonstrates superior molecular packing, as evidenced by grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements showing a crystalline coherence length more than twice that of NA1 (101.3 Å vs. 44.6 Å). This improvement originates from the significantly enhanced dipole moment of NA8 (4.26 D vs. 2.21 D for NA1), which facilitates stronger electrostatic and noncovalent interactions (e.g., S···N and H···N contacts), thereby stabilizing more ordered packing motifs.At the blend-film level, atomic force microscopy (AFM) reveals that PM6:NA8 exhibits a rougher yet more clearly phase-separated morphology compared with PM6:NA1, providing continuous transport pathways. Photo-CELIV measurements confirm higher carrier mobility (2.36 × 10−4 cm2 V−1 s−1 vs. 1.29 × 10−4 cm2 V−1 s−1), while transient absorption spectroscopy shows faster exciton dissociation and reduced bimolecular recombination. Together, these synergistic effects explain why the PM6:NA8 device achieves an outstanding power conversion efficiency of 19.04% using non-halogenated o-xylene, compared with 15.14% for PM6:NA1. The improvement primarily arises from the significantly enhanced short-circuit current density (27.35 mA cm−2) and fill factor (78.3%), while the open-circuit voltage is only moderately reduced (0.889 V vs. 0.914 V) due to increased reorganization energy associated with C–C bond vibrations in the CN-substituted BP core. Our study identifies core cyanation as a powerful molecular engineering strategy to concurrently tune energy levels, strengthen molecular packing, and optimize nanoscale morphology, providing valuable design guidance for next-generation organic photovoltaics.
  • 加载中
    1. [1]

      J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, et al., Joule 3 (2019) 1140, https://doi.org/10.1016/j.joule.2019.01.004.  doi: 10.1016/j.joule.2019.01.004

    2. [2]

      R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia, P. Cheng, C. Yan, Q. Fan, S. Liu, L. Ye, et al., Sci. China Mater. 68 (2025) 1689, https://doi.org/10.1007/s40843-025-3366-9.  doi: 10.1007/s40843-025-3366-9

    3. [3]

      Y. Li, Y. Xu, F. Yang, X. Jiang, X. Jiang, C. Li, S. You, W. Li, Chin. Chem. Lett. 30 (2019) 222, https://doi.org/10.1016/j.cclet.2018.09.014.  doi: 10.1016/j.cclet.2018.09.014

    4. [4]

      A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 5 (2020) 711, https://doi.org/10.1038/s41560-020-00684-7.  doi: 10.1038/s41560-020-00684-7

    5. [5]

      L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J.-H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, et al., Nat. Mater. 17 (2018) 253, https://doi.org/10.1038/s41563-017-0005-1.  doi: 10.1038/s41563-017-0005-1

    6. [6]

      C. Li, J. Song, H. Lai, H. Zhang, R. Zhou, J. Xu, H. Huang, L. Liu, J. Gao, Y. Li, et al., Nat. Mater. 24 (2025) 433, https://doi.org/10.1038/s41563-024-02087-5.  doi: 10.1038/s41563-024-02087-5

    7. [7]

      J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 6 (2022) 614, https://doi.org/10.1038/s41570-022-00409-2.  doi: 10.1038/s41570-022-00409-2

    8. [8]

      C. Xie, C. Xiao, H. Niu, G. Feng, W. Li, Chin. Chem. Lett. 35 (2024) 109849, https://doi.org/10.1016/j.cclet.2024.109849.  doi: 10.1016/j.cclet.2024.109849

    9. [9]

      J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 17 (2018) 119, https://doi.org/10.1038/NMAT5063.  doi: 10.1038/NMAT5063

    10. [10]

      W. Wei, C. Zhang, Zhan. Chen, W. Chen, G. Ran, G. Pan, W. Zhang, P. Buschbaum, Z. Bo, C. Yang, Z. Luo, Angew. Chem. Int. Ed. 63 (2024) e202315625, https://doi.org/10.1002/anie.202315625.  doi: 10.1002/anie.202315625

    11. [11]

      L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, et al., Nat. Mater. 21 (2022) 656, https://doi.org/10.1038/s41563-022-01244-y.  doi: 10.1038/s41563-022-01244-y

    12. [12]

      K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, et al., Nat. Energy 7 (2022) 1076, https://doi.org/10.1038/s41560-022-01138-y.  doi: 10.1038/s41560-022-01138-y

    13. [13]

      L. Wang, C. Chen, Y. Fu, C. Guo, D. Li, J. Cheng, W. Sun, Z. Gan, Y. Sun, B. Zhou, et al., Nat. Energy 9 (2024) 208, https://doi.org/10.1038/s41560-023-01436-z.  doi: 10.1038/s41560-023-01436-z

    14. [14]

      K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 34 (2022) 2109516, https://doi.org/10.1002/adma.202109516.  doi: 10.1002/adma.202109516

    15. [15]

      J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang, X. Liu, S. Zhang, X. Hao, M. Zhang, Y. Li, J. Hou, Natl. Sci. Rev. 10 (2023) nwad085, https://doi.org/10.1093/nsr/nwad085.  doi: 10.1093/nsr/nwad085

    16. [16]

      C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, et al., Nat. Energy 6 (2022) 605, https://doi.org/10.1038/s41560-021-00820-x.  doi: 10.1038/s41560-021-00820-x

    17. [17]

      Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170, https://doi.org/10.1002/adma.201404317.  doi: 10.1002/adma.201404317

    18. [18]

      Q. Bei, B. Zhang, K. Wang, S. Zhang, G. Xing, C. Cabanetos, Chin. Chem. Lett. 35 (2024) 108438, https://doi.org/10.1016/j.ccle.2023.108438.  doi: 10.1016/j.ccle.2023.108438

    19. [19]

      H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen, L. Yu, G. Zhang, C. Yang, Z. Luo, Sci. China Chem. 2025, 68, https://doi.org/10.1007/s11426-025-2671-6.  doi: 10.1007/s11426-025-2671-6

    20. [20]

      P. Zhang, Z. Zhang, H. Sun, J. Li, Y. Chen, J. Wang, C. Zhan, Chin. Chem. Lett. 35 (2024) 108802, https://doi.org/10.1016/j.cclet.2023.108802.  doi: 10.1016/j.cclet.2023.108802

    21. [21]

      Y. Wang, X. Jiang, H. Song, N. Wei, Y. Wang, X. Xu, C. Li, H. Lu, Y. Liu, Z. Bo, Acta Phys. Chim. Sin. 41 (2025) 100027, https://doi.org/10.3866/pku.Whxb202406007.  doi: 10.3866/pku.Whxb202406007

    22. [22]

      Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 6 (2022) 171, https://doi.org/10.1016/j.joule.2021.12.017.  doi: 10.1016/j.joule.2021.12.017

    23. [23]

      W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao, D. Jiang, J. Yu, G. Zhang, H. Yin, R. Yang, et al., Adv. Mater. 37 (2025) 2413125, https://doi.org/10.1002/adma.202413125.  doi: 10.1002/adma.202413125

    24. [24]

      Y. Xu, Y. Liao, W. Wang, Y. Wang, J. Wang, Z. Suo, F. Li, R. Wang, W. Ni, B. Kan, et al., Adv. Mater. 37 (2025) 2501653, https://doi.org/10.1002/adma.202501653.  doi: 10.1002/adma.202501653

    25. [25]

      S. Wang, S. Wang, J. Wang, N. Yu, J. Qiao, X. Xie, C. Li, M. S. Abbasi, R. Ding, X. Zhang, et al., Adv. Energy Mater. 37 (2025) 2405205, https://doi.org/10.1002/aenm.202405205.  doi: 10.1002/aenm.202405205

    26. [26]

      S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 36 (2024) 2400342, https://doi.org/10.1002/adma.202400342.  doi: 10.1002/adma.202400342

    27. [27]

      B. Fan, H. Gao, L. Yu, R. Li, L. Wang, W. Zhong, Y. Wang, W. Jiang, H. Fu, T. Chen, et al., Angew. Chem. Int. Ed. 64 (2025) e202418439, https://doi.org/10.1002/anie.202418439.  doi: 10.1002/anie.202418439

    28. [28]

      J. Guo, S. Qin, J. Zhang, C. Zhu, X. Xia, Y. Gong, T. Liang, Y. Zeng, G. Han, H. Zhuo, et al., Nat. Commun. 16 (2025) 1503, https://doi.org/10.1038/s41467-025-56799-6.  doi: 10.1038/s41467-025-56799-6

    29. [29]

      Z. Luo, W. Wei, R. Ma, G. Ran, M. H. Jee, Z. Chen, Y. Li, W. Zhang, H. Y. Woo, C. Yang, Adv. Mater. 36 (2024) 2407517, https://doi.org/10.1002/adma.202407517.  doi: 10.1002/adma.202407517

    30. [30]

      S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu, K. Wang, M. Wang, W. Ma, J. Xia, Z. Ma, et al., Energy Environ. Sci. 18 (2025) 313, https://doi.org/10.1039/d4ee03778b.  doi: 10.1039/d4ee03778b

    31. [31]

      L. Zeng, R. Hu, M. Zhang, S. Lee, Q. Wang, S. Meng, Q. Chen, J. Liu, L. Xue, L. Mi, et al., Energy Environ. Sci. 18 (2025) 6754, https://doi.org/10.1039/d5ee01686j.  doi: 10.1039/d5ee01686j

    32. [32]

      C. Li, G. Yao, X. Gu, J. Lv, Y. Hou, Q. Lin, N. Yu, M. S. Abbasi, X. Zhang, J. Zhang, et al., Nat. Commun. 15 (2024) 8872, https://doi.org/10.1038/s41467-024-53286-2.  doi: 10.1038/s41467-024-53286-2

    33. [33]

      Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 9 (2024) 975, https://doi.org/10.1038/s41560-024-01557-z.  doi: 10.1038/s41560-024-01557-z

    34. [34]

      X. Song, B. Zhang, X. Liu, L. Mei, H. Li, S. Yin, X. Zhou, H. Chen, Y. Lin, W. Zhu, X.-K. Chen, Adv. Mater. 37 (2025) 2418393, https://doi.org/10.1002/adma.202418393.  doi: 10.1002/adma.202418393

    35. [35]

      N. Wei, H. Lu, Y. Wei, Y. Guo, H. Song, J. Chen, Z. Yang, Y. Cheng, Z. Bian, W. Zhang, et al., Energy Environ. Sci. 18 (2025) 2298, https://doi.org/10.1039/d4ee05375c.  doi: 10.1039/d4ee05375c

    36. [36]

      M. Zhang, L. Zhu, J. Yan, X. Xue, Z. Wang, F. Eisner, G. Zhou, R. Zeng, L. Kan, L. Wu, et al., Joule 9 (2025) 101851, https://doi.org/10.1016/j.joule.2025.101851.  doi: 10.1016/j.joule.2025.101851

    37. [37]

      J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang, B. Lan, W. Feng, H. Liu, Y. Liu, X. Wan, et al., Angew. Chem. Int. Ed. 64 (2025) e202423562, https://doi.org/10.1002/anie.202423562.  doi: 10.1002/anie.202423562

    38. [38]

      H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding, J. Zhou, Z. Wang, H. Li, W. Chen, J. Zhu, et al., Nat. Mater. 24 (2025) 444, https://doi.org/10.1038/s41563-024-02062-0.  doi: 10.1038/s41563-024-02062-0

    39. [39]

      Z. Chen, J. Ge, W. Song, X. Tong, H. Liu, X. Yu, J. Li, J. Shi, L. Xie, C. Han, Q. Liu, Z. Ge, Adv. Mater. 36 (2024) e2406690, https://doi.org/10.1002/adma.202406690.  doi: 10.1002/adma.202406690

    40. [40]

      B. Cheng, W. Hou, C. Han, S. Cheng, X. Xia, X. Guo, Y. Li, M. Zhang, Energy Environ. Sci. 18 (2025) 1375, https://doi.org/10.1039/d4ee04623d.  doi: 10.1039/d4ee04623d

    41. [41]

      Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang, T. Zhang, R. Xu, H. Liu, W. Zhang, Z. Wei, et al., Adv. Mater. 37 (2025) 2500282, https://doi.org/10.1002/adma.202500282.  doi: 10.1002/adma.202500282

    42. [42]

      R. Ma, B. Zou, Y. Hai, Y. Luo, Z. Luo, J. Wu, H. Yan, G. Li, Adv. Mater. 37 (2025) 2500861, https://doi.org/10.1002/adma.202500861.  doi: 10.1002/adma.202500861

    43. [43]

      C. Wang, Q. Chen, C. Zhang, B. Han, X. Liu, S. Liang, B. Wang, C. Xiao, B. Gao, Z. Tang, et al., CCS Chem. 7 (2025) 1177, https://doi.org/10.31635/ccschem.024.202404023.  doi: 10.31635/ccschem.024.202404023

    44. [44]

      R. Li, S. Liang, Y. Xu, C. Zhang, Z. Tang, B. Liu, W. Li, Acta Phys.-Chim. Sin. 40 (2024) 2307037, https://doi.org/10.3866/PKU.WHXB202307037.  doi: 10.3866/PKU.WHXB202307037

    45. [45]

      Y. Cho, Z. Sun, K. M. Lee, G. Zeng, S. Jeong, S. Yang, J. E. Lee, B. Lee, S.-H. Kang, Y. Li, et al., ACS Energy Lett. 8 (2023) 96, https://doi.org/10.1021/acsenergylett.2c02140.  doi: 10.1021/acsenergylett.2c02140

    46. [46]

      L. Chen, C. Zhao, H. Yu, A. Sergeev, L. Zhu, K. Ding, Y. Fu, H. M. Ng, C. H. Kwok, X. Zou, et al., Adv. Energy Mater. 14 (2024) 2400285, https://doi.org/10.1002/aenm.202400285.  doi: 10.1002/aenm.202400285

    47. [47]

      X. Ran, C. Zhang, D. Qiu, A. Tang, J. Li, T. Wang, J. Zhang, Z. Wei, K. Lu, Adv. Mater. 37 (2025) 2504805, https://doi.org/10.1002/adma.202504805.  doi: 10.1002/adma.202504805

    48. [48]

      K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 143 (2021) 1539, https://doi.org/10.1021/jacs.0c11608.

    49. [49]

      Y. Li, H. Fu, Z. Wu, X. Wu, M. Wang, H. Qin, F. Lin, H. Y. Woo, A. K. Jen, ChemSusChem 14 (2021) 3579, https://doi.org/10.1002/cssc.202100746.  doi: 10.1002/cssc.202100746

    50. [50]

      Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao, L. Zhu, Q. Bai, C. Xie, P. You, J. Lv, et al., Adv. Mater. 36 (2024) 2411957, https://doi.org/10.1002/adma.20241195  doi: 10.1002/adma.20241195

    51. [51]

      D. Luo, L. Zhang, J. Zeng, H. Zhang, L. Li, T. Dai, B. Xu, E. Zhou, A. K. K. Kyaw, Y. Chen, W. Y. Wong, Adva. Mater. 36 (2024) 2410880, https://doi.org/10.1002/adma.202410880.  doi: 10.1002/adma.202410880

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    7. [7]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    20. [20]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

Metrics
  • PDF Downloads(0)
  • Abstract views(2)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return