Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility
- Corresponding author: Zhenghui Luo, zhhuiluo@szu.edu.cn
Citation:
Zhenhuan Wang, Weifei Wei, Ruijie Ma, Dou Luo, Zhanxiang Chen, Jun Zhang, Liyang Yu, Gang Li, Zhenghui Luo. Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility[J]. Acta Physico-Chimica Sinica,
;2026, 42(2): 100182.
doi:
10.1016/j.actphy.2025.100182
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, et al., Joule 3 (2019) 1140, https://doi.org/10.1016/j.joule.2019.01.004.
doi: 10.1016/j.joule.2019.01.004
R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia, P. Cheng, C. Yan, Q. Fan, S. Liu, L. Ye, et al., Sci. China Mater. 68 (2025) 1689, https://doi.org/10.1007/s40843-025-3366-9.
doi: 10.1007/s40843-025-3366-9
Y. Li, Y. Xu, F. Yang, X. Jiang, X. Jiang, C. Li, S. You, W. Li, Chin. Chem. Lett. 30 (2019) 222, https://doi.org/10.1016/j.cclet.2018.09.014.
doi: 10.1016/j.cclet.2018.09.014
A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 5 (2020) 711, https://doi.org/10.1038/s41560-020-00684-7.
doi: 10.1038/s41560-020-00684-7
L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J.-H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, et al., Nat. Mater. 17 (2018) 253, https://doi.org/10.1038/s41563-017-0005-1.
doi: 10.1038/s41563-017-0005-1
C. Li, J. Song, H. Lai, H. Zhang, R. Zhou, J. Xu, H. Huang, L. Liu, J. Gao, Y. Li, et al., Nat. Mater. 24 (2025) 433, https://doi.org/10.1038/s41563-024-02087-5.
doi: 10.1038/s41563-024-02087-5
J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 6 (2022) 614, https://doi.org/10.1038/s41570-022-00409-2.
doi: 10.1038/s41570-022-00409-2
C. Xie, C. Xiao, H. Niu, G. Feng, W. Li, Chin. Chem. Lett. 35 (2024) 109849, https://doi.org/10.1016/j.cclet.2024.109849.
doi: 10.1016/j.cclet.2024.109849
J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 17 (2018) 119, https://doi.org/10.1038/NMAT5063.
doi: 10.1038/NMAT5063
W. Wei, C. Zhang, Zhan. Chen, W. Chen, G. Ran, G. Pan, W. Zhang, P. Buschbaum, Z. Bo, C. Yang, Z. Luo, Angew. Chem. Int. Ed. 63 (2024) e202315625, https://doi.org/10.1002/anie.202315625.
doi: 10.1002/anie.202315625
L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, et al., Nat. Mater. 21 (2022) 656, https://doi.org/10.1038/s41563-022-01244-y.
doi: 10.1038/s41563-022-01244-y
K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, et al., Nat. Energy 7 (2022) 1076, https://doi.org/10.1038/s41560-022-01138-y.
doi: 10.1038/s41560-022-01138-y
L. Wang, C. Chen, Y. Fu, C. Guo, D. Li, J. Cheng, W. Sun, Z. Gan, Y. Sun, B. Zhou, et al., Nat. Energy 9 (2024) 208, https://doi.org/10.1038/s41560-023-01436-z.
doi: 10.1038/s41560-023-01436-z
K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 34 (2022) 2109516, https://doi.org/10.1002/adma.202109516.
doi: 10.1002/adma.202109516
J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang, X. Liu, S. Zhang, X. Hao, M. Zhang, Y. Li, J. Hou, Natl. Sci. Rev. 10 (2023) nwad085, https://doi.org/10.1093/nsr/nwad085.
doi: 10.1093/nsr/nwad085
C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, et al., Nat. Energy 6 (2022) 605, https://doi.org/10.1038/s41560-021-00820-x.
doi: 10.1038/s41560-021-00820-x
Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170, https://doi.org/10.1002/adma.201404317.
doi: 10.1002/adma.201404317
Q. Bei, B. Zhang, K. Wang, S. Zhang, G. Xing, C. Cabanetos, Chin. Chem. Lett. 35 (2024) 108438, https://doi.org/10.1016/j.ccle.2023.108438.
doi: 10.1016/j.ccle.2023.108438
H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen, L. Yu, G. Zhang, C. Yang, Z. Luo, Sci. China Chem. 2025, 68, https://doi.org/10.1007/s11426-025-2671-6.
doi: 10.1007/s11426-025-2671-6
P. Zhang, Z. Zhang, H. Sun, J. Li, Y. Chen, J. Wang, C. Zhan, Chin. Chem. Lett. 35 (2024) 108802, https://doi.org/10.1016/j.cclet.2023.108802.
doi: 10.1016/j.cclet.2023.108802
Y. Wang, X. Jiang, H. Song, N. Wei, Y. Wang, X. Xu, C. Li, H. Lu, Y. Liu, Z. Bo, Acta Phys. Chim. Sin. 41 (2025) 100027, https://doi.org/10.3866/pku.Whxb202406007.
doi: 10.3866/pku.Whxb202406007
Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 6 (2022) 171, https://doi.org/10.1016/j.joule.2021.12.017.
doi: 10.1016/j.joule.2021.12.017
W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao, D. Jiang, J. Yu, G. Zhang, H. Yin, R. Yang, et al., Adv. Mater. 37 (2025) 2413125, https://doi.org/10.1002/adma.202413125.
doi: 10.1002/adma.202413125
Y. Xu, Y. Liao, W. Wang, Y. Wang, J. Wang, Z. Suo, F. Li, R. Wang, W. Ni, B. Kan, et al., Adv. Mater. 37 (2025) 2501653, https://doi.org/10.1002/adma.202501653.
doi: 10.1002/adma.202501653
S. Wang, S. Wang, J. Wang, N. Yu, J. Qiao, X. Xie, C. Li, M. S. Abbasi, R. Ding, X. Zhang, et al., Adv. Energy Mater. 37 (2025) 2405205, https://doi.org/10.1002/aenm.202405205.
doi: 10.1002/aenm.202405205
S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 36 (2024) 2400342, https://doi.org/10.1002/adma.202400342.
doi: 10.1002/adma.202400342
B. Fan, H. Gao, L. Yu, R. Li, L. Wang, W. Zhong, Y. Wang, W. Jiang, H. Fu, T. Chen, et al., Angew. Chem. Int. Ed. 64 (2025) e202418439, https://doi.org/10.1002/anie.202418439.
doi: 10.1002/anie.202418439
J. Guo, S. Qin, J. Zhang, C. Zhu, X. Xia, Y. Gong, T. Liang, Y. Zeng, G. Han, H. Zhuo, et al., Nat. Commun. 16 (2025) 1503, https://doi.org/10.1038/s41467-025-56799-6.
doi: 10.1038/s41467-025-56799-6
Z. Luo, W. Wei, R. Ma, G. Ran, M. H. Jee, Z. Chen, Y. Li, W. Zhang, H. Y. Woo, C. Yang, Adv. Mater. 36 (2024) 2407517, https://doi.org/10.1002/adma.202407517.
doi: 10.1002/adma.202407517
S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu, K. Wang, M. Wang, W. Ma, J. Xia, Z. Ma, et al., Energy Environ. Sci. 18 (2025) 313, https://doi.org/10.1039/d4ee03778b.
doi: 10.1039/d4ee03778b
L. Zeng, R. Hu, M. Zhang, S. Lee, Q. Wang, S. Meng, Q. Chen, J. Liu, L. Xue, L. Mi, et al., Energy Environ. Sci. 18 (2025) 6754, https://doi.org/10.1039/d5ee01686j.
doi: 10.1039/d5ee01686j
C. Li, G. Yao, X. Gu, J. Lv, Y. Hou, Q. Lin, N. Yu, M. S. Abbasi, X. Zhang, J. Zhang, et al., Nat. Commun. 15 (2024) 8872, https://doi.org/10.1038/s41467-024-53286-2.
doi: 10.1038/s41467-024-53286-2
Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 9 (2024) 975, https://doi.org/10.1038/s41560-024-01557-z.
doi: 10.1038/s41560-024-01557-z
X. Song, B. Zhang, X. Liu, L. Mei, H. Li, S. Yin, X. Zhou, H. Chen, Y. Lin, W. Zhu, X.-K. Chen, Adv. Mater. 37 (2025) 2418393, https://doi.org/10.1002/adma.202418393.
doi: 10.1002/adma.202418393
N. Wei, H. Lu, Y. Wei, Y. Guo, H. Song, J. Chen, Z. Yang, Y. Cheng, Z. Bian, W. Zhang, et al., Energy Environ. Sci. 18 (2025) 2298, https://doi.org/10.1039/d4ee05375c.
doi: 10.1039/d4ee05375c
M. Zhang, L. Zhu, J. Yan, X. Xue, Z. Wang, F. Eisner, G. Zhou, R. Zeng, L. Kan, L. Wu, et al., Joule 9 (2025) 101851, https://doi.org/10.1016/j.joule.2025.101851.
doi: 10.1016/j.joule.2025.101851
J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang, B. Lan, W. Feng, H. Liu, Y. Liu, X. Wan, et al., Angew. Chem. Int. Ed. 64 (2025) e202423562, https://doi.org/10.1002/anie.202423562.
doi: 10.1002/anie.202423562
H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding, J. Zhou, Z. Wang, H. Li, W. Chen, J. Zhu, et al., Nat. Mater. 24 (2025) 444, https://doi.org/10.1038/s41563-024-02062-0.
doi: 10.1038/s41563-024-02062-0
Z. Chen, J. Ge, W. Song, X. Tong, H. Liu, X. Yu, J. Li, J. Shi, L. Xie, C. Han, Q. Liu, Z. Ge, Adv. Mater. 36 (2024) e2406690, https://doi.org/10.1002/adma.202406690.
doi: 10.1002/adma.202406690
B. Cheng, W. Hou, C. Han, S. Cheng, X. Xia, X. Guo, Y. Li, M. Zhang, Energy Environ. Sci. 18 (2025) 1375, https://doi.org/10.1039/d4ee04623d.
doi: 10.1039/d4ee04623d
Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang, T. Zhang, R. Xu, H. Liu, W. Zhang, Z. Wei, et al., Adv. Mater. 37 (2025) 2500282, https://doi.org/10.1002/adma.202500282.
doi: 10.1002/adma.202500282
R. Ma, B. Zou, Y. Hai, Y. Luo, Z. Luo, J. Wu, H. Yan, G. Li, Adv. Mater. 37 (2025) 2500861, https://doi.org/10.1002/adma.202500861.
doi: 10.1002/adma.202500861
C. Wang, Q. Chen, C. Zhang, B. Han, X. Liu, S. Liang, B. Wang, C. Xiao, B. Gao, Z. Tang, et al., CCS Chem. 7 (2025) 1177, https://doi.org/10.31635/ccschem.024.202404023.
doi: 10.31635/ccschem.024.202404023
R. Li, S. Liang, Y. Xu, C. Zhang, Z. Tang, B. Liu, W. Li, Acta Phys.-Chim. Sin. 40 (2024) 2307037, https://doi.org/10.3866/PKU.WHXB202307037.
doi: 10.3866/PKU.WHXB202307037
Y. Cho, Z. Sun, K. M. Lee, G. Zeng, S. Jeong, S. Yang, J. E. Lee, B. Lee, S.-H. Kang, Y. Li, et al., ACS Energy Lett. 8 (2023) 96, https://doi.org/10.1021/acsenergylett.2c02140.
doi: 10.1021/acsenergylett.2c02140
L. Chen, C. Zhao, H. Yu, A. Sergeev, L. Zhu, K. Ding, Y. Fu, H. M. Ng, C. H. Kwok, X. Zou, et al., Adv. Energy Mater. 14 (2024) 2400285, https://doi.org/10.1002/aenm.202400285.
doi: 10.1002/aenm.202400285
X. Ran, C. Zhang, D. Qiu, A. Tang, J. Li, T. Wang, J. Zhang, Z. Wei, K. Lu, Adv. Mater. 37 (2025) 2504805, https://doi.org/10.1002/adma.202504805.
doi: 10.1002/adma.202504805
K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 143 (2021) 1539, https://doi.org/10.1021/jacs.0c11608.
Y. Li, H. Fu, Z. Wu, X. Wu, M. Wang, H. Qin, F. Lin, H. Y. Woo, A. K. Jen, ChemSusChem 14 (2021) 3579, https://doi.org/10.1002/cssc.202100746.
doi: 10.1002/cssc.202100746
Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao, L. Zhu, Q. Bai, C. Xie, P. You, J. Lv, et al., Adv. Mater. 36 (2024) 2411957, https://doi.org/10.1002/adma.20241195
doi: 10.1002/adma.20241195
D. Luo, L. Zhang, J. Zeng, H. Zhang, L. Li, T. Dai, B. Xu, E. Zhou, A. K. K. Kyaw, Y. Chen, W. Y. Wong, Adva. Mater. 36 (2024) 2410880, https://doi.org/10.1002/adma.202410880.
doi: 10.1002/adma.202410880
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
Shuixing Dai , Jilei Jiang , Yuxiao Wang , Jinqi Hu , Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
Binbin Liu , Yang Chen , Tianci Jia , Chen Chen , Zhanghao Wu , Yuhui Liu , Yuhang Zhai , Tianshu Ma , Changlei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Jiashuang Lu , Xiaoyang Xu , Youqing He , Mingyue Wu , Ruixin Shi , Wenfang Yu , Hang Lu , Ji Liu , Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057