共价有机框架中的组分工程用于定制光催化

邵毅宏 沈荣晨 王松 李世杰 张鹏 李鑫

引用本文: 邵毅宏, 沈荣晨, 王松, 李世杰, 张鹏, 李鑫. 共价有机框架中的组分工程用于定制光催化[J]. 物理化学学报, 2025, 41(12): 100176. doi: 10.1016/j.actphy.2025.100176 shu
Citation:  Yihong Shao, Rongchen Shen, Song Wang, Shijie Li, Peng Zhang, Xin Li. Composition engineering in covalent organic frameworks for tailored photocatalysis[J]. Acta Physico-Chimica Sinica, 2025, 41(12): 100176. doi: 10.1016/j.actphy.2025.100176 shu

共价有机框架中的组分工程用于定制光催化

    通讯作者: 王松, wangsong1984@hbuas.edu.cn; 李世杰, lishijie@zjou.edu.cn; 张鹏, zhangp@zzu.edu.cn; 李鑫, Xinli@scau.edu.cn
  • 基金项目:

    国家自然科学基金 22378148

    国家自然科学基金 21975084

    广东省自然科学基金 2024A1515012433

    国家自然科学基金 2230082074

摘要: 能源危机与环境恶化的危害日益严峻,亟需发展环境友好型可持续生产技术。将丰富的太阳能直接转化为化学能,被视为一种极具前景的绿色高效技术方案。在此过程中,光催化剂扮演着至关重要的角色。共价有机框架材料(COFs)作为一种通过共价键连接的多孔材料,凭借其高比表面积、优异的结晶性和可调控的结构,展现出卓越的光催化潜力。本综述深入探讨了组分调控对提升COFs光催化性能的作用机制,涵盖调控光吸收、增加活性位点、促进激子解离以及改善载流子分离,并对相关计算模拟与机理表征方法进行了详细论述。更为重要的是,系统总结了组分调控的核心策略,包括杂原子工程、金属单原子工程、离子工程、官能团工程、供体-受体(D-A)分子工程、侧链工程、多组分工程、同分异构工程、共轭桥工程、单分子结工程和层间工程。此外,本文还详细阐述了这些策略在光催化析氢(H2)、过氧化氢(H2O2)合成及二氧化碳(CO2)还原等领域的多样化改性策略与应用。最后,对COF基光催化技术当前面临的挑战及未来发展方向进行了前瞻性展望。

English

    1. [1]

      D. Shindell, C. J. Smith, Nature 573 (2019) 408, https://doi.org/10.1038/s41586-019-1554-z doi: 10.1038/s41586-019-1554-z

    2. [2]

      T. Banerjee, F. Podjaski, J. Kröger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 6 (2021) 168, https://doi.org/10.1038/s41578-020-00254-z doi: 10.1038/s41578-020-00254-z

    3. [3]

      W. Zhou, Q. Jing, J. Li, Y. Chen, G. Hao, L. -N. Wang, Acta Phys. Chim. Sin. 38 (2022) 2211010, https://doi.org/10.3866/pku.Whxb202211010 doi: 10.3866/pku.Whxb202211010

    4. [4]

      D. N. Ampong, E. Effah, E. A. Tsiwah, A. Kumar, E. Agyekum, E. N. A. Doku, O. Issaka, F. O. Agyemang, K. Mensah-Darkwa, R. K. Gupta, Coordin. Chem. Rev. 519 (2024) 216121, https://doi.org/10.1016/j.ccr.2024.216121 doi: 10.1016/j.ccr.2024.216121

    5. [5]

      D. Li, Chem. Res. Chin. Univ. 41 (2025) 472, https://doi.org/10.1007/s40242-025-5060-6 doi: 10.1007/s40242-025-5060-6

    6. [6]

      N. Zahir, V. Rajangam, S. S. Kalanur, S. I. Nikitenko, B. G. Pollet, Energy Environ. Mater. 8 (2025) e70014, https://doi.org/10.1002/eem2.70014 doi: 10.1002/eem2.70014

    7. [7]

      S. Peng, D. Liu, H. Bai, C. Liu, J. Feng, K. An, L. Qiao, K. H. Lo, H. Pan, EcoEnergy 3 (2025) 25, https://doi.org/10.1002/ece2.73 doi: 10.1002/ece2.73

    8. [8]

      H. Meskher, A. R. Woldu, P. K. Chu, F. Lu, L. Hu, EcoEnergy 2 (2024) 630, https://doi.org/10.1002/ece2.68 doi: 10.1002/ece2.68

    9. [9]

      J. Chen, S. Gao, T. Gan, B. Wang, EcoEnergy n/a (2025) e96, https://doi.org/10.1002/ece2.96 doi: 10.1002/ece2.96

    10. [10]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64551-6 doi: 10.1016/s1872-2067(23)64551-6

    11. [11]

      M. Zhang, K. Li, C. Hu, K. Ma, W. Sun, X. Huang, Y. Ding, Chin. J. Catal. 47 (2023) 254, https://doi.org/10.1016/S1872-2067(23)64393-1 doi: 10.1016/S1872-2067(23)64393-1

    12. [12]

      W. Hu, Z. Zhang, G. Mu, J. Hazard. Mater. 494 (2025) 138532, https://doi.org/10.1016/j.jhazmat.2025.138532 doi: 10.1016/j.jhazmat.2025.138532

    13. [13]

      S. -J. Liu, T. -T. Hu, H. -Q. Chu, Z. -Z. Li, W. Zhou, Rare. Metals 44 (2025) 3622, https://doi.org/10.1007/s12598-024-03182-x doi: 10.1007/s12598-024-03182-x

    14. [14]

      C. Feng, Z. -P. Wu, K. -W. Huang, J. Ye, H. Zhang, Adv. Mater. 34 (2022) 2200180, https://doi.org/10.1002/adma.202200180 doi: 10.1002/adma.202200180

    15. [15]

      Y. Wan, F. Fang, R. Sun, J. Zhang, K. Chang, Acta Phys. Chim. Sin. 39 (2023) 2212042, https://doi.org/10.3866/pku.whxb202212042 doi: 10.3866/pku.whxb202212042

    16. [16]

      Q. Wang, C. Chen, M. Li, L. Wu, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100147, https://doi.org/10.1016/j.actphy.2025.100147 doi: 10.1016/j.actphy.2025.100147

    17. [17]

      L. -L. Wu, L. -Q. Yang, W. -X. Liu, T. -Y. Hang, X. -F. Yang, Rare. Metals 44 (2025) 4411, https://doi.org/10.1007/s12598-024-03088-8 doi: 10.1007/s12598-024-03088-8

    18. [18]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 67 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8 doi: 10.1007/s40843-023-2754-8

    19. [19]

      Y. -D. Sun, C. Zeng, X. Zhang, Z. -Q. Zhang, B. Yang, S. -Q. Guo, Rare. Metals. 43 (2024) 1488, https://doi.org/10.1007/s12598-023-02569-6 doi: 10.1007/s12598-023-02569-6

    20. [20]

      D. Zhao, Y. Yang, V. Binas, S. Shen, Sci. China Mater. 67 (2024) 1765, https://doi.org/10.1007/s40843-024-2870-1 doi: 10.1007/s40843-024-2870-1

    21. [21]

      Y. X. Leiu, K. M. Lim, Z. -J. Chiah, E. S. -Z. Mah, W. -J. Ong, EcoEnergy 3 (2025) 217, https://doi.org/10.1002/ece2.81 doi: 10.1002/ece2.81

    22. [22]

      K. Wang, T. Yang, G. Dawson, J. Zhang, C. Shao, K. Dai, Chem. Res. Chin. Univ. 41 (2025) 716, https://doi.org/10.1007/s40242-025-4257-z doi: 10.1007/s40242-025-4257-z

    23. [23]

      D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7 (2024) e12774, https://doi.org/10.1002/eem2.12774 doi: 10.1002/eem2.12774

    24. [24]

      C. Liu, T. Gao, G. Wang, Q. Cheng, K. Wang, Chem. Res. Chin. Univ. 41 (2025) 726, https://doi.org/10.1007/s40242-025-5033-9 doi: 10.1007/s40242-025-5033-9

    25. [25]

      X. Sun, J. Tian, J. Cai, Y. Wang, T. He, X. Qiu, Z. Li, Z. Yao, D. W. Bahnemann, J. Pan, Energy Environ. Mater. 8 (2025) e70012, https://doi.org/10.1002/eem2.70012 doi: 10.1002/eem2.70012

    26. [26]

      Z. Zheng, S. Tian, Y. Feng, S. Zhao, X. Li, S. Wang, Z. He, Chin. J. Catal. 54 (2023) 88, https://doi.org/10.1016/s1872-2067(23)64536-x doi: 10.1016/s1872-2067(23)64536-x

    27. [27]

      M. Sayed, H. Li, C. Bie, Acta Phys-Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117 doi: 10.1016/j.actphy.2025.100117

    28. [28]

      Z. Guo, S. Yang, M. Liu, Q. Xu, G. Zeng, EcoEnergy 2 (2024) 192, https://doi.org/10.1002/ece2.32 doi: 10.1002/ece2.32

    29. [29]

      L. Guo, J. Gao, M. Li, Y. Xie, H. Chen, S. Wang, Z. Li, X. Wang, W. Zhou, EcoEnergy 1 (2023) 437, https://doi.org/10.1002/ece2.20 doi: 10.1002/ece2.20

    30. [30]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys-Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016 doi: 10.3866/PKU.WHXB202405016

    31. [31]

      B. Guene Lougou, B. -X. Geng, R. -M. Pan, W. Wang, T. -T. Yan, F. -H. Li, H. Zhang, O. S. Djandja, Y. Shuai, M. Tabatabaei, et al., Rare. Metals. 43 (2024) 2913, https://doi.org/10.1007/s12598-024-02638-4 doi: 10.1007/s12598-024-02638-4

    32. [32]

      Z. Liu, F. Jin, X. Li, P. Zhang, Z. Jin, J. Mater. Sci. Technol. 188 (2024) 131, https://doi.org/10.1016/j.jmst.2023.10.060 doi: 10.1016/j.jmst.2023.10.060

    33. [33]

      B. Qi, R. Shen, Z. Ren, Y. Teng, H. Ding, X. Zhang, Y. Zhang, L. Hao, X. Li, J. Mater. Sci. Technol. 232 (2025) 65, https://doi.org/10.1016/j.jmst.2025.03.003 doi: 10.1016/j.jmst.2025.03.003

    34. [34]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065 doi: 10.1002/adfm.202400065

    35. [35]

      S. Biswas, A. Dey, F. A. Rahimi, S. Barman, T. K. Maji, ACS Catal. 13 (2023) 5926, https://doi.org/10.1021/acscatal.2c05203 doi: 10.1021/acscatal.2c05203

    36. [36]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys-Chim. Sin. 40 (2024) 2403032, https://doi.org/10.3866/pku.whxb202403032 doi: 10.3866/pku.whxb202403032

    37. [37]

      C. Yang, Q. Zhang, W. Wang, B. Cheng, J. Yu, S. Cao, Sci. China Mater. 67 (2024) 1830, https://doi.org/10.1007/s40843-024-2789-0 doi: 10.1007/s40843-024-2789-0

    38. [38]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/pku.Whxb202406021 doi: 10.3866/pku.Whxb202406021

    39. [39]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/pku.whxb202312007 doi: 10.3866/pku.whxb202312007

    40. [40]

      H. Yu, X. Zhang, Q. Chen, P. -K. Zhou, F. Xu, H. Wang, X. Chen, Chem. Res. Chin. Univ. 41 (2025) 734, https://doi.org/10.1007/s40242-024-4213-3 doi: 10.1007/s40242-024-4213-3

    41. [41]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/pku.whxb202407012 doi: 10.3866/pku.whxb202407012

    42. [42]

      Z. Yu, D. Zhang, C. Ai, J. Zhang, Q. Xiang, Chin. J. Catal. 67 (2024) 71, https://doi.org/10.1016/s1872-2067(24)60159-2 doi: 10.1016/s1872-2067(24)60159-2

    43. [43]

      H. Ran, X. Liu, L. Ye, J. Fan, B. Zhu, Q. Xu, Y. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089 doi: 10.1016/j.jmst.2024.12.089

    44. [44]

      Z. Liu, Y. Bian, G. Dawson, J. Zhu, K. Dai, Chinese Chem. Lett. 36 (2025) 111272, https://doi.org/10.1016/j.cclet.2025.111272 doi: 10.1016/j.cclet.2025.111272

    45. [45]

      Y. Huanga, J. Zhang, O. Ruzimuradov, S. Mamatkulov, K. Da, J. Low, Compos. Funct. Mate. 1 (2025) 20250103, https://doi.org/10.63823/20250103 doi: 10.63823/20250103

    46. [46]

      M. Lin, M. Luo, Y. Liu, J. Shen, J. Long, Z. Zhang, Chin. J. Catal. 50 (2023) 239, https://doi.org/10.1016/s1872-2067(23)64477-8 doi: 10.1016/s1872-2067(23)64477-8

    47. [47]

      C. Wu, K. Lv, X. Li, Q. Li, Chin. J. Catal. 54 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64542-5 doi: 10.1016/s1872-2067(23)64542-5

    48. [48]

      X. -C. Zhang, S. -L. Cheng, F. -T. Liao, C. Chen, M. -C. Long, Rare Metals 43 (2024) 6144, https://doi.org/10.1007/s12598-024-02752-3 doi: 10.1007/s12598-024-02752-3

    49. [49]

      Y. Guo, L. Wei, Z. Wen, C. Qi, H. Jiang, Acta Phys-Chim. Sin. 40 (2024) 2307004, https://doi.org/10.3866/pku.whxb202307004 doi: 10.3866/pku.whxb202307004

    50. [50]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0 doi: 10.1038/238037a0

    51. [51]

      M. Zhi, H. Tang, M. Wu, C. Ouyang, Z. Hong, N. Wu, Energ. Fuel. 36 (2022) 11359, https://doi.org/10.1021/acs.energyfuels.2c01049 doi: 10.1021/acs.energyfuels.2c01049

    52. [52]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/pku.whxb202406027 doi: 10.3866/pku.whxb202406027

    53. [53]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. Chim. Sin. 39 (2023) 2302051, https://doi.org/10.3866/pku.whxb202302051 doi: 10.3866/pku.whxb202302051

    54. [54]

      T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174 (2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053 doi: 10.1016/j.jmst.2023.03.053

    55. [55]

      Q. Zhu, Q. Xu, M. Du, X. Zeng, G. Zhong, B. Qiu, J. Zhang, Adv. Mater. 34 (2022) 2202929, https://doi.org/10.1002/adma.202202929 doi: 10.1002/adma.202202929

    56. [56]

      X. Xin, Y. Li, Y. Zhang, Y. Wang, X. Chi, Y. Wei, C. Diao, J. Su, R. Wang, P. Guo, et al., Nat. Commun. 15 (2024) 337, https://doi.org/10.1038/s41467-024-44725-1 doi: 10.1038/s41467-024-44725-1

    57. [57]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/s1872-2067(24)60072-0 doi: 10.1016/s1872-2067(24)60072-0

    58. [58]

      Y. Zhou, W. Wang, J. Li, W. Ren, L. Wang, Q. Liu, Chem. Res. Chin. Univ. 41 (2025) 687, https://doi.org/10.1007/s40242-025-5103-z doi: 10.1007/s40242-025-5103-z

    59. [59]

      A. López-Magano, S. Daliran, A. R. Oveisi, R. Mas-Ballesté, A. Dhakshinamoorthy, J. Alemán, H. Garcia, R. Luque, Adv. Mater. 35 (2023) 2209475, https://doi.org/10.1002/adma.202209475 doi: 10.1002/adma.202209475

    60. [60]

      L. Sun, W. Wang, P. Lu, Q. Liu, L. Wang, H. Tang, Chin. J. Catal. 51 (2023) 90, https://doi.org/10.1016/s1872-2067(23)64492-4 doi: 10.1016/s1872-2067(23)64492-4

    61. [61]

      T. Wang, S. Yu, C. Wang, X. Yin, H. Niu, S. Gao, Energy Environ. Mater. n/a (2025) e70097, https://doi.org/10.1002/eem2.70097 doi: 10.1002/eem2.70097

    62. [62]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. -T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970, https://doi.org/10.1126/science.aaa3145 doi: 10.1126/science.aaa3145

    63. [63]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys-Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/pku.whxb202406005 doi: 10.3866/pku.whxb202406005

    64. [64]

      J. Tang, C. Guo, T. Wang, X. Cheng, L. Huo, X. Zhang, C. Huang, Z. Major, Y. Xu, Carbon Neutral. 3 (2024) 557, https://doi.org/10.1002/cnl2.121 doi: 10.1002/cnl2.121

    65. [65]

      H. Zhan, R. Zhou, K. Liu, Z. Ma, P. Wang, S. Zhan, Q. Zhou, Sci. China Mater. 67 (2024) 1740, https://doi.org/10.1007/s40843-024-2900-5 doi: 10.1007/s40843-024-2900-5

    66. [66]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2 doi: 10.1007/s40843-023-2755-2

    67. [67]

      Y. Li, S. Wang, X. Wang, EcoEnergy 2 (2024) 205, https://doi.org/10.1002/ece2.35 doi: 10.1002/ece2.35

    68. [68]

      H. Ji, Y. Liu, G. Du, T. Huang, Y. Zhu, Y. Sun, H. Pang, Chem. Res. Chin. Univ. 40 (2024) 943, https://doi.org/10.1007/s40242-024-4179-1 doi: 10.1007/s40242-024-4179-1

    69. [69]

      Z. Sun, P. Yin, S. He, K. Zhang, X. Pan, J. Wang, P. Hao, Z. Zhou, X. Yang, L. Ma, C. Tan, Chem. Res. Chin. Univ. 41 (2025) 519, https://doi.org/10.1007/s40242-025-5034-8 doi: 10.1007/s40242-025-5034-8

    70. [70]

      J. Liu, K. Qi, X. Xiang, A. Jamal Sisi, A. Khataee, L. Xu, Energy Environ. Mater. n/a (2025) e70071, https://doi.org/10.1002/eem2.70071 doi: 10.1002/eem2.70071

    71. [71]

      L. Jiao, Y. Wang, H. -L. Jiang, Q. Xu, Adv. Mater. 30 (2018) 1703663, https://doi.org/10.1002/adma.201703663 doi: 10.1002/adma.201703663

    72. [72]

      C. Liu, H. Liu, J. C. Yu, L. Wu, Z. Li, Chin. J. Catal. 55 (2023) 1, https://doi.org/10.1016/s1872-2067(23)64556-5 doi: 10.1016/s1872-2067(23)64556-5

    73. [73]

      S. -K. Le, Q. -J. Jin, J. -A. Han, H. -C. Zhou, Q. -S. Liu, F. Yang, J. Miao, P. -P. Liu, C. -Z. Zhu, H. -T. Xu, Rare Metals 43 (2024) 1390, https://doi.org/10.1007/s12598-023-02584-7 doi: 10.1007/s12598-023-02584-7

    74. [74]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012 doi: 10.1016/j.jmst.2024.02.012

    75. [75]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229 doi: 10.1002/anie.202414229

    76. [76]

      C. Lu, Y. Gong, D. Zhong, T. Lu, Chem. Res. Chin. Univ. 41 (2025) 655, https://doi.org/10.1007/s40242-025-5074-0 doi: 10.1007/s40242-025-5074-0

    77. [77]

      X. Hao, Y. Lan, S. Gao, X. Yang, R. Cao, Sci. China Mater. 68 (2025) 1145, https://doi.org/10.1007/s40843-024-3266-5 doi: 10.1007/s40843-024-3266-5

    78. [78]

      H. Liu, D. Wang, Z. Yu, Y. Chen, X. Li, R. Zhang, X. Chen, L. Wu, N. Ding, Y. Wang, Y. Zhao, Sci. China Mater. 66 (2023) 2283, https://doi.org/10.1007/s40843-022-2351-y doi: 10.1007/s40843-022-2351-y

    79. [79]

      F. Auras, L. Ascherl, V. Bon, S. M. Vornholt, S. Krause, M. Döblinger, D. Bessinger, S. Reuter, K. W. Chapman, S. Kaskel, et al., Nat. Chem. 16 (2024) 1373, https://doi.org/10.1038/s41557-024-01527-8 doi: 10.1038/s41557-024-01527-8

    80. [80]

      Y. Yang, B. Liang, J. Kreie, M. Hambsch, Z. Liang, C. Wang, S. Huang, X. Dong, L. Gong, C. Liang, et al., Nature 630 (2024) 878, https://doi.org/10.1038/s41586-024-07505-x doi: 10.1038/s41586-024-07505-x

    81. [81]

      J. Chang, Z. Zhang, H. Zheng, H. Li, J. Suo, C. Ji, F. Chen, S. Zhang, Z. Wang, V. Valtchev, et al., Nat. Chem. 17 (2025) 571, https://doi.org/10.1038/s41557-024-01715-6 doi: 10.1038/s41557-024-01715-6

    82. [82]

      A. Yao, H. Xu, K. Shao, C. Sun, C. Qin, X. Wang, Z. Su, Nat. Commun. 16 (2025) 1385, https://doi.org/10.1038/s41467-025-56750-9 doi: 10.1038/s41467-025-56750-9

    83. [83]

      A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 310 (2005) 1166, https://doi.org/10.1126/science.1120411 doi: 10.1126/science.1120411

    84. [84]

      C. Zhao, C. Yang, X. Lv, S. Wang, C. Hu, G. Zheng, Q. Han, Adv. Mater. 36 (2024) 2401004, https://doi.org/10.1002/adma.202401004 doi: 10.1002/adma.202401004

    85. [85]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, https://doi.org/10.1016/j.jmst.2023.05.030 doi: 10.1016/j.jmst.2023.05.030

    86. [86]

      S. Yan, B. Zhang, W. Liu, F. Duan, Y. Li, Y. Ren, S. Lu, M. Du, M. Chen, Chem. Res. Chin. Univ. 41 (2025) 495, https://doi.org/10.1007/s40242-025-5009-9 doi: 10.1007/s40242-025-5009-9

    87. [87]

      F. Tan, Y. Zheng, Z. Zhou, H. Wang, X. Dong, J. Yang, Z. Ou, H. Qi, W. Liu, Z. Zheng, X. Chen, CCS Chem. 4 (2022) 3751, https://doi.org/10.31635/ccschem.022.202101578 doi: 10.31635/ccschem.022.202101578

    88. [88]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014 doi: 10.3866/PKU.WHXB202312014

    89. [89]

      Z. Gu, Z. Shan, Y. Wang, J. Wang, T. Liu, X. Li, Z. Yu, J. Su, G. Zhang, Chin. Chem. Lett. 35 (2024) 108356, https://doi.org/10.1016/j.cclet.2023.108356 doi: 10.1016/j.cclet.2023.108356

    90. [90]

      Y. Yin, Y. Zhang, X. Zhou, B. Gui, W. Wang, W. Jiang, Y. -B. Zhang, J. Sun, C. Wang, Science 386 (2024) 693, https://doi.org/10.1126/science.adr0936 doi: 10.1126/science.adr0936

    91. [91]

      B. Li, Z. Wang, Z. Gao, J. Suo, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q. Fang, Adv. Funct. Mater. 33 (2023) 2300219, https://doi.org/10.1002/adfm.202300219 doi: 10.1002/adfm.202300219

    92. [92]

      Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L. -P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 9 (2018) 576, https://doi.org/10.1038/s41467-018-02889-7 doi: 10.1038/s41467-018-02889-7

    93. [93]

      H. Zhang, Y. Geng, J. Huang, Z. Wang, K. Du, H. Li, Energy Environ. Sci. 16 (2023) 889, https://doi.org/10.1039/D2EE02742A doi: 10.1039/D2EE02742A

    94. [94]

      G. Yang, Q. Xu, G. Zeng, Electron 2 (2024) e39, https://doi.org/10.1002/elt2.39 doi: 10.1002/elt2.39

    95. [95]

      H. Li, J. Liu, Y. Wang, C. Guo, Y. Pi, Q. Fang, J. Liu, Coordin. Chem. Rev. 523 (2025) 216240, https://doi.org/10.1016/j.ccr.2024.216240 doi: 10.1016/j.ccr.2024.216240

    96. [96]

      Y. -J. Chen, M. Liu, J. Chen, X. Huang, Q. -H. Li, X. -L. Ye, G. -E. Wang, G. Xu, Chem. Sci. 14 (2023) 4824, https://doi.org/10.1039/D3SC00562C doi: 10.1039/D3SC00562C

    97. [97]

      R. Xue, Y. -S. Liu, S. -L. Huang, G. -Y. Yang, ACS Sensors 8 (2023) 2124, https://doi.org/10.1021/acssensors.3c00269 doi: 10.1021/acssensors.3c00269

    98. [98]

      K. Xu, N. Huang, Chem. Res. Chin. Univ. 38 (2022) 339, https://doi.org/10.1007/s40242-022-1476-4 doi: 10.1007/s40242-022-1476-4

    99. [99]

      L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 5 (2014) 2789, https://doi.org/10.1039/c4sc00016a doi: 10.1039/c4sc00016a

    100. [100]

      X. Zhang, C. Gao, Y. Zhou, R. Chen, X. Guan, Z. Shen, B. Hu, Q. -H. Xu, Sci. China. Chem. 68 (2025) 3277, https://doi.org/10.1007/s11426-024-2446-7 doi: 10.1007/s11426-024-2446-7

    101. [101]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005 doi: 10.1016/j.jmst.2025.03.005

    102. [102]

      H. Huang, Q. Lin, Q. Niu, J. Ning, L. Li, J. Bi, Y. Yu, Chin. J. Catal. 60 (2024) 201, https://doi.org/10.1016/s1872-2067(24)60027-6 doi: 10.1016/s1872-2067(24)60027-6

    103. [103]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028 doi: 10.1016/j.jmst.2023.06.028

    104. [104]

      Y. -L. Li, S. -L. Huang, G. -Y. Yang, Sci. China. Chem. 67 (2024) 3719, https://doi.org/10.1007/s11426-024-2043-2 doi: 10.1007/s11426-024-2043-2

    105. [105]

      S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 140 (2018) 14614, https://doi.org/10.1021/jacs.8b09705 doi: 10.1021/jacs.8b09705

    106. [106]

      C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, et al., J. Am. Chem. Soc. 142 (2020) 20107, https://doi.org/10.1021/jacs.0c09684 doi: 10.1021/jacs.0c09684

    107. [107]

      H. Ran, Q. Xu, Y. Yang, H. Li, J. Fan, G. Liu, L. Zhang, J. Zou, H. Jin, S. Wang, ACS Catal. 14 (2024) 11675, https://doi.org/10.1021/acscatal.4c02738 doi: 10.1021/acscatal.4c02738

    108. [108]

      M. Xu, R. Shen, Y. Mo, G. Liang, S. Li, P. Zhang, X. Chen, Y. Li, X. Li, InfoScience n/a (2025) e70001, https://doi.org/10.1002/inc2.70001 doi: 10.1002/inc2.70001

    109. [109]

      Y. Qian, D. Li, Y. Han, H. -L. Jiang, J. Am. Chem. Soc. 142 (2020) 20763, https://doi.org/10.1021/jacs.0c09727 doi: 10.1021/jacs.0c09727

    110. [110]

      J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/d4ee01808g doi: 10.1039/d4ee01808g

    111. [111]

      Y. Yan, L. Hao, Z. Ren, R. Shen, G. Liang, P. Zhang, Y. Teng, D. Xu, X. Li, J. Mater. Sci. Technol. 249 (2026) 305, https://doi.org/10.1016/j.jmst.2025.06.015 doi: 10.1016/j.jmst.2025.06.015

    112. [112]

      Z. Alsudairy, N. Brown, A. Campbell, A. Ambus, B. Brown, K. Smith-Petty, X. Li, Mater. Chem. Front. 7 (2023) 3298, https://doi.org/10.1039/D3QM00188A doi: 10.1039/D3QM00188A

    113. [113]

      K. Prakash, R. Deka, S. M. Mobin, Inorg. Chem. Front. 11 (2024) 6711, https://doi.org/10.1039/D4QI01480D doi: 10.1039/D4QI01480D

    114. [114]

      J. G. Doremus, B. Lotsi, A. Sharma, P. L. McGrier, Nanoscale 16 (2024) 21619, https://doi.org/10.1039/D4NR03204G doi: 10.1039/D4NR03204G

    115. [115]

      F. Chen, H. Zheng, Y. Yusran, H. Li, S. Qiu, Q. Fang, Chem. Soc. Rev. 54 (2025) 484, https://doi.org/10.1039/D4CS00703D doi: 10.1039/D4CS00703D

    116. [116]

      I. Ahamd, Z. U. D. Babar, Y. Zhang, A. Al-Qattan, S. B. Ahmed, G. Li, J. Mater. Chem. A 13 (2025) 15517, https://doi.org/10.1039/D5TA01232E doi: 10.1039/D5TA01232E

    117. [117]

      W. Zhao, L. Sun, L. Yang, R. Zhang, G. Ren, S. Wang, H. Wu, X. Kang, W. -Q. Deng, C. Liu, Sci. China Mater. 68 (2025) 165, https://doi.org/10.1007/s40843-024-3168-3 doi: 10.1007/s40843-024-3168-3

    118. [118]

      S. Zhong, Y. Wang, M. Xie, Y. Wu, J. Li, J. Peng, L. Yuan, M. Zhai, W. Shi, Chin. Chem. Lett. 36 (2025) 110312, https://doi.org/10.1016/j.cclet.2024.110312 doi: 10.1016/j.cclet.2024.110312

    119. [119]

      Q. Liao, W. Xu, X. Huang, C. Ke, Q. Zhang, K. Xi, J. Xie, Sci. China. Chem. 63 (2020) 707, https://doi.org/10.1007/s11426-019-9696-3 doi: 10.1007/s11426-019-9696-3

    120. [120]

      S. Liu, J. Guo, Chem. Res. Chin. Univ. 38 (2022) 373, https://doi.org/10.1007/s40242-022-2007-z doi: 10.1007/s40242-022-2007-z

    121. [121]

      X. Dong, F. Zhang, Y. Wang, F. Huang, X. Lang, Appl. Catal. B Environ. Energy 345 (2024) 123660, https://doi.org/10.1016/j.apcatb.2023.123660 doi: 10.1016/j.apcatb.2023.123660

    122. [122]

      X. Zhan, Y. Jin, B. Han, Z. Zhou, B. Chen, X. Ding, F. Li, Z. Suo, R. Jiang, D. Qi, et al., Chin. J. Catal. 69 (2025) 271, https://doi.org/10.1016/s1872-2067(24)60196-8 doi: 10.1016/s1872-2067(24)60196-8

    123. [123]

      X. Liu, R. Qi, S. Li, W. Liu, Y. Yu, J. Wang, S. Wu, K. Ding, Y. Yu, J. Am. Chem. Soc. 144 (2022) 23396, https://doi.org/10.1021/jacs.2c09369 doi: 10.1021/jacs.2c09369

    124. [124]

      W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 5 (2020) 869, https://doi.org/10.1038/s41578-020-0223-z doi: 10.1038/s41578-020-0223-z

    125. [125]

      H. Wang, W. Liu, X. He, P. Zhang, X. Zhang, Y. Xie, J. Am. Chem. Soc. 142 (2020) 14007, https://doi.org/10.1021/jacs.0c06966 doi: 10.1021/jacs.0c06966

    126. [126]

      A. Sugie, K. Nakano, K. Tajima, I. Osaka, H. Yoshida, J. Phys. Chem. Lett. 14 (2023) 11412, https://doi.org/10.1021/acs.jpclett.3c02863 doi: 10.1021/acs.jpclett.3c02863

    127. [127]

      S. Kashani, J. J. Rech, T. Liu, K. Baustert, A. Ghaffari, I. Angunawela, Y. Xiong, A. Dinku, W. You, K. Graham, H. Ade, Adv. Energy Mater. 14 (2024) 2302837, https://doi.org/10.1002/aenm.202302837 doi: 10.1002/aenm.202302837

    128. [128]

      M. -Y. Heng, H. -L. Shao, J. -T. Sun, Q. Huang, S. -L. Shen, G. -Z. Yang, Y. -H. Xue, S. -N. Xiao, Rare Metals 44 (2025) 1108, https://doi.org/10.1007/s12598-024-03000-4 doi: 10.1007/s12598-024-03000-4

    129. [129]

      Y. Shuang, Y. Zhang, H. Wang, L. Li, X. Hao, Z. Ma, S. Wang, J. Wang, F. Wang, X. Yang, et al., Adv. Mater. 37 (2025) 2500468, https://doi.org/10.1002/adma.202500468 doi: 10.1002/adma.202500468

    130. [130]

      Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 6 (2023) 574, https://doi.org/10.1038/s41929-023-00972-x doi: 10.1038/s41929-023-00972-x

    131. [131]

      J. Wang, W. Liao, Y. Tan, O. Henrotte, Y. Kang, K. Liu, J. Fu, Z. Lin, L. Chai, E. Cortes, M. Liu, Chem. Soc. Rev. 54 (2025) 6553, https://doi.org/10.1039/d5cs00512d doi: 10.1039/d5cs00512d

    132. [132]

      Z. Liu, Y. Zhang, Y. Wu, B. Yang, Z. Zhou, Z. Jin, J. Mater. Sci. Technol. 233 (2025) 48, https://doi.org/10.1016/j.jmst.2025.01.040 doi: 10.1016/j.jmst.2025.01.040

    133. [133]

      Z. Lin, X. Yu, Z. Zhao, N. Ding, C. Wang, K. Hu, Y. Zhu, J. Guo, Nat. Commun. 16 (2025) 1940, https://doi.org/10.1038/s41467-025-57166-1 doi: 10.1038/s41467-025-57166-1

    134. [134]

      P. Sun, J. Zhang, Y. Song, Z. Mo, Z. Chen, H. Xu, Acta Phys. Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/pku.whxb202311001 doi: 10.3866/pku.whxb202311001

    135. [135]

      M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202200413, https://doi.org/10.1002/anie.202200413 doi: 10.1002/anie.202200413

    136. [136]

      Y. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 62 (2023) e202305355, https://doi.org/10.1002/anie.202305355 doi: 10.1002/anie.202305355

    137. [137]

      J. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y. -Y. Liu, et al., Angew. Chem. Int. Ed. 62 (2023) e202216719, https://doi.org/10.1002/anie.202216719 doi: 10.1002/anie.202216719

    138. [138]

      J. -Y. Yue, L. -P. Song, Y. -F. Fan, Z. -X. Pan, P. Yang, Y. Ma, Q. Xu, B. Tang, Angew. Chem. Int. Ed. 62 (2023) e202309624, https://doi.org/10.1002/anie.202309624 doi: 10.1002/anie.202309624

    139. [139]

      Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao, L. Jiang, C. Zhang, X. Yuan, E. Huixiang Ang, H. Wang, Angew. Chem. Int. Ed. 62 (2023) e202309480, https://doi.org/10.1002/anie.202309480 doi: 10.1002/anie.202309480

    140. [140]

      Q. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li, K. Xi, Angew. Chem. Int. Ed. 62 (2023) e202310556, https://doi.org/10.1002/anie.202310556 doi: 10.1002/anie.202310556

    141. [141]

      Y. Zhang, L. Cao, G. Bai, X. Lan, Small 19 (2023) 2300035, https://doi.org/10.1002/smll.202300035 doi: 10.1002/smll.202300035

    142. [142]

      S. Guo, K. Zhao, L. Liang, Z. Li, B. Han, X. Ou, S. Yao, Z. Lin, Z. Dong, Y. Liu, L. et al., Angew. Chem. Int. Ed. 64 (2025) e202509141, https://doi.org/10.1002/anie.202509141 doi: 10.1002/anie.202509141

    143. [143]

      X. Zhang, Z. Xiao, L. Jiao, H. Wu, Y. -X. Tan, J. Lin, D. Yuan, Y. Wang, Angew. Chem. Int. Ed. 63 (2024) e202408697, https://doi.org/10.1002/anie.202408697 doi: 10.1002/anie.202408697

    144. [144]

      M. Yu, W. Chen, Q. Lin, L. Li, Z. Liu, J. Bi, Y. Yu, Angew. Chem. Int. Ed. 64 (2025) e202418422, https://doi.org/10.1002/anie.202418422 doi: 10.1002/anie.202418422

    145. [145]

      W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 59 (2020) 16902, https://doi.org/10.1002/anie.202006925 doi: 10.1002/anie.202006925

    146. [146]

      V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, B. V. Lotsch, Nat. Commun. 6 (2015) 8508, https://doi.org/10.1038/ncomms9508 doi: 10.1038/ncomms9508

    147. [147]

      H. -H. Sun, Z. -B. Zhou, Y. Fu, Q. -Y. Qi, Z. -X. Wang, S. Xu, X. Zhao, Angew. Chem. Int. Ed. 63 (2024) e202409250, https://doi.org/10.1002/anie.202409250 doi: 10.1002/anie.202409250

    148. [148]

      D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 62 (2023) e202217479, https://doi.org/10.1002/anie.202217479 doi: 10.1002/anie.202217479

    149. [149]

      Z. Zhang, Q. Zhang, Y. Hou, J. Li, S. Zhu, H. Xia, H. Yue, X. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411546, https://doi.org/10.1002/anie.202411546 doi: 10.1002/anie.202411546

    150. [150]

      X. Luo, Y. Chen, J. -T. Lin, J. Luo, R. -Q. Xia, N. Yin, Y. -M. Lin, H. Duan, S. -B. Ren, Q. Gao, et al., Chin. J. Chem. 43 (2025) 1199, https://doi.org/10.1002/cjoc.202401245 doi: 10.1002/cjoc.202401245

    151. [151]

      Y. Zhang, Y. Wu, H. Ma, Y. Gao, X. Fan, Y. Zhao, F. Kang, Z. Li, Y. Liu, Q. Zhang, Small 21 (2025) 2500674, https://doi.org/10.1002/smll.202500674 doi: 10.1002/smll.202500674

    152. [152]

      L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li, Sci. China Mater. 67 (2024) 504, https://doi.org/10.1007/s40843-023-2747-6 doi: 10.1007/s40843-023-2747-6

    153. [153]

      C. Chen, K. -L. He, J. -Q. Li, Y. Tu, Y. -H. Liang, Z. -M. Huang, Q. -T. Zhang, Rare Metals 44 (2025) 4507, https://doi.org/10.1007/s12598-025-03249-3 doi: 10.1007/s12598-025-03249-3

    154. [154]

      Z. -W. Deng, Y. Liu, J. Lin, W. -X. Chen, Rare Metals 43 (2024) 4844, https://doi.org/10.1007/s12598-024-02727-4 doi: 10.1007/s12598-024-02727-4

    155. [155]

      H. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 10 (2020) 6579, https://doi.org/10.1021/acscatal.0c01459 doi: 10.1021/acscatal.0c01459

    156. [156]

      H. Zhang, Z. Lin, P. Kidkhunthod, J. Guo, Angew. Chem. Int. Ed. 62 (2023) e202217527, https://doi.org/10.1002/anie.202217527 doi: 10.1002/anie.202217527

    157. [157]

      L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 144 (2022) 17097, https://doi.org/10.1021/jacs.2c06920 doi: 10.1021/jacs.2c06920

    158. [158]

      V. Hasija, S. Patial, P. Raizada, A. Aslam Parwaz Khan, A. M. Asiri, Q. Van Le, V. -H. Nguyen, P. Singh, Coordin. Chem. Rev. 452 (2022) 214298, https://doi.org/10.1016/j.ccr.2021.214298 doi: 10.1016/j.ccr.2021.214298

    159. [159]

      Y. Cui, C. Ren, M. Wu, Y. Chen, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 146 (2024) 29169, https://doi.org/10.1021/jacs.4c11516 doi: 10.1021/jacs.4c11516

    160. [160]

      P. Fu, C. Chen, C. Wu, B. Meng, Q. Yue, T. Chen, W. Yin, X. Chi, X. Yu, R. Li, et al., Angew. Chem. Int. Ed. 64 (2025) e202415202, https://doi.org/10.1002/anie.202415202 doi: 10.1002/anie.202415202

    161. [161]

      L. Fang, S. Qiu, H. Xu, T. Ye, L. Li, Adv. Funct. Mater. n/a (2025) 2504676, https://doi.org/10.1002/adfm.202504676 doi: 10.1002/adfm.202504676

    162. [162]

      H. Ben, W. Du, J. Zhao, Y. Wang, Y. Wu, F. Lin, Y. Lei, S. Zhou, J. Pu, M. Ye, et al., Coord. Chem. Rev. 517 (2024) 216003, https://doi.org/10.1016/j.ccr.2024.216003 doi: 10.1016/j.ccr.2024.216003

    163. [163]

      Y. Fu, Y. Li, W. Zhang, C. Luo, L. Jiang, H. Ma, Chem. Res. Chin. Univ. 38 (2022) 296, https://doi.org/10.1007/s40242-022-1448-8 doi: 10.1007/s40242-022-1448-8

    164. [164]

      Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S. -H. Lee, W. Zhang, Angew. Chem. Int. Ed. 55 (2016) 1737, https://doi.org/10.1002/anie.201509014 doi: 10.1002/anie.201509014

    165. [165]

      Z. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu, W. Yang, C. Wang, K. A. I. Zhang, J. Guo, Angew. Chem. Int. Ed. 60 (2021) 9642, https://doi.org/10.1002/anie.202016618 doi: 10.1002/anie.202016618

    166. [166]

      F. Hao, C. Yang, X. Lv, F. Chen, S. Wang, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 62 (2023) e202315456, https://doi.org/10.1002/anie.202315456 doi: 10.1002/anie.202315456

    167. [167]

      Y. Fu, Y. Wu, S. Chen, W. Zhang, Y. Zhang, T. Yan, B. Yang, H. Ma, ACS Nano 15 (2021) 19743, https://doi.org/10.1021/acsnano.1c07178 doi: 10.1021/acsnano.1c07178

    168. [168]

      H. Ben, G. Yan, H. Liu, C. Ling, Y. Fan, X. Zhang, Adv. Funct. Mater. 32 (2022) 2104519, https://doi.org/10.1002/adfm.202104519 doi: 10.1002/adfm.202104519

    169. [169]

      H. Ji, D. Qiao, G. Yan, B. Dong, Y. Feng, X. Qu, Y. Jiang, X. Zhang, ACS Appl. Mater. Inter. 15 (2023) 37845, https://doi.org/10.1021/acsami.3c08250 doi: 10.1021/acsami.3c08250

    170. [170]

      Z. Zhang, Y. Xu, J. Am. Chem. Soc. 145 (2023) 25222, https://doi.org/10.1021/jacs.3c08220 doi: 10.1021/jacs.3c08220

    171. [171]

      G. Fu, D. Yang, S. Xu, S. Li, Y. Zhao, H. Yang, D. Wu, P. S. Petkov, Z. -A. Lan, X. Wang, T. Zhang, J. Am. Chem. Soc. 146 (2024) 1318, https://doi.org/10.1021/jacs.3c08755 doi: 10.1021/jacs.3c08755

    172. [172]

      H. Yu, F. Zhang, Q. Chen, P. -K. Zhou, W. Xing, S. Wang, G. Zhang, Y. Jiang, X. Chen, Angew. Chem. Int. Ed. 63 (2024) e202402297, https://doi.org/10.1002/anie.202402297 doi: 10.1002/anie.202402297

    173. [173]

      E. Zhou, F. Wang, X. Zhang, Y. Hui, Y. Wang, Angew. Chem. Int. Ed. 63 (2024) e202400999, https://doi.org/10.1002/anie.202400999 doi: 10.1002/anie.202400999

    174. [174]

      Y. Hou, P. Zhou, F. Liu, Y. Lu, H. Tan, Z. Li, M. Tong, J. Ni, Angew. Chem. Int. Ed. 63 (2024) e202318562, https://doi.org/10.1002/anie.202318562 doi: 10.1002/anie.202318562

    175. [175]

      X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. -H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 10 (2018) 1180, https://doi.org/10.1038/s41557-018-0141-5 doi: 10.1038/s41557-018-0141-5

    176. [176]

      J. Su, B. Liu, B. Lu, X. Sun, Y. Guo, W. Chi, Y. Yang, X. Chen, H. Zhao, Y. Wang, et al., Appl. Catal. B Environ. Energy 371 (2025) 125263, https://doi.org/10.1016/j.apcatb.2025.125263 doi: 10.1016/j.apcatb.2025.125263

    177. [177]

      L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 63 (2024) e202320218, https://doi.org/10.1002/anie.202320218 doi: 10.1002/anie.202320218

    178. [178]

      C. Sun, Y. Han, H. Guo, R. Zhao, Y. Liu, Z. Lin, Z. Xiao, Z. Sun, M. Luo, S. Guo, Adv. Mater. 37 (2025) 2502990, https://doi.org/10.1002/adma.202502990 doi: 10.1002/adma.202502990

    179. [179]

      Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H. -L. Jiang, Nat. Commun. 14 (2023) 3083, https://doi.org/10.1038/s41467-023-38884-w doi: 10.1038/s41467-023-38884-w

    180. [180]

      Z. Chen, J. Guo, F. -H. Song, S. -D. Wang, S. A. C. Carabineiro, S. -X. Ouyang, L. -L. Wen, ACS Catal. 15 (2025) 8284, https://doi.org/10.1021/acscatal.5c01163 doi: 10.1021/acscatal.5c01163

    181. [181]

      H. Liu, X. Yan, W. Chen, Z. Xie, S. Li, W. Chen, T. Zhang, G. Xing, L. Chen, Sci. China. Chem. 64 (2021) 827, https://doi.org/10.1007/s11426-020-9931-4 doi: 10.1007/s11426-020-9931-4

    182. [182]

      W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y. -B. Zhang, K. Wen, Angew. Chem. Int. Ed. 60 (2021) 1869, https://doi.org/10.1002/anie.202014408 doi: 10.1002/anie.202014408

    183. [183]

      C. Li, J. Liu, H. Li, K. Wu, J. Wang, Q. Yang, Nat. Commun. 13 (2022) 2357, https://doi.org/10.1038/s41467-022-30035-x doi: 10.1038/s41467-022-30035-x

    184. [184]

      C. Shu, X. Yang, L. Liu, X. Hu, R. Sun, X. Yang, A. I. Cooper, B. Tan, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202403926, https://doi.org/10.1002/anie.202403926 doi: 10.1002/anie.202403926

    185. [185]

      X. -C. Li, H. Sun, Z. Wang, W. Yang, Q. Wang, C. Wu, J. Chen, Q. Jiang, L. -J. He, Q. Xue, et al., Nat. Commun. 16 (2025) 3321, https://doi.org/10.1038/s41467-025-58534-7 doi: 10.1038/s41467-025-58534-7

    186. [186]

      S. Sun, C. -Q. Han, J. -X. Guo, L. Wang, Z. -Y. Wang, G. Lu, X. -Y. Liu, J. Mater. Chem. C 13 (2025) 2814, https://doi.org/10.1039/D4TC03991B doi: 10.1039/D4TC03991B

    187. [187]

      Y. Yao, C. Zhu, R. Liu, Q. Fang, S. Song, B. Chen, Y. Shen, Small 20 (2024) 2404885, https://doi.org/10.1002/smll.202404885 doi: 10.1002/smll.202404885

    188. [188]

      C. E. Pelkowski, A. Natraj, C. D. Malliakas, D. W. Burke, M. I. Bardot, Z. Wang, H. Li, W. R. Dichtel, J. Am. Chem. Soc. 145 (2023) 21798, https://doi.org/10.1021/jacs.3c03868 doi: 10.1021/jacs.3c03868

    189. [189]

      Z. Xie, X. Chen, W. Wang, X. Ke, X. Zhang, S. Wang, X. Wu, J. C. Yu, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202410179, https://doi.org/10.1002/anie.202410179 doi: 10.1002/anie.202410179

    190. [190]

      Y. Song, T. Wang, M. Li, X. Dou, S. Huang, J. Zhao, R. Yang, C. Li, Small 21 (2025) 2505421, https://doi.org/10.1002/smll.202505421 doi: 10.1002/smll.202505421

    191. [191]

      P. Wu, M. Givskov, T. E. Nielsen, Chem. Rev. 119 (2019) 11245, https://doi.org/10.1021/acs.chemrev.9b00214 doi: 10.1021/acs.chemrev.9b00214

    192. [192]

      Q. Guan, L. -L. Zhou, Y. -B. Dong, J. Am. Chem. Soc. 145 (2023) 1475, https://doi.org/10.1021/jacs.2c11071 doi: 10.1021/jacs.2c11071

    193. [193]

      P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A. D. Nguyen, M. Schwarze, J. Gabriel, C. Penschke, S. Du, et al., Adv. Energy Mater. n/a (2025) 2501193, https://doi.org/10.1002/aenm.202501193 doi: 10.1002/aenm.202501193

    194. [194]

      K. -H. Xie, G. -B. Wang, F. Huang, F. Zhao, J. -L. Kan, Z. -Z. Chen, L. Cai, S. -L. Han, Y. Geng, Y. -B. Dong, Nat. Commun. 16 (2025) 3493, https://doi.org/10.1038/s41467-025-58839-7 doi: 10.1038/s41467-025-58839-7

    195. [195]

      P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 62 (2023) e202304349, https://doi.org/10.1002/anie.202304349 doi: 10.1002/anie.202304349

    196. [196]

      P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 145 (2023) 2975, https://doi.org/10.1021/jacs.2c11454 doi: 10.1021/jacs.2c11454

    197. [197]

      G. -B. Wang, Y. -J. Wang, J. -L. Kan, K. -H. Xie, H. -P. Xu, F. Zhao, M. -C. Wang, Y. Geng, Y. -B. Dong, J. Am. Chem. Soc. 145 (2023) 4951, https://doi.org/10.1021/jacs.2c13541 doi: 10.1021/jacs.2c13541

    198. [198]

      Z. -C. Zhang, P. -L. Wang, Y. -F. Sun, T. Yang, S. -Y. Ding, W. Wang, J. Am. Chem. Soc. 146 (2024) 4822, https://doi.org/10.1021/jacs.3c13172 doi: 10.1021/jacs.3c13172

    199. [199]

      J. Yang, S. Ghosh, J. Roeser, A. Acharjya, C. Penschke, Y. Tsutsui, J. Rabeah, T. Wang, S. Y. Djoko Tameu, M. -Y. Ye, et al., Nat. Commun. 13 (2022) 6317, https://doi.org/10.1038/s41467-022-33875-9 doi: 10.1038/s41467-022-33875-9

    200. [200]

      W. Dong, Z. Qin, K. Wang, Y. Xiao, X. Liu, S. Ren, L. Li, Angew. Chem. Int. Ed. 62 (2023) e202216073, https://doi.org/10.1002/anie.202216073 doi: 10.1002/anie.202216073

    201. [201]

      W. Zhang, M. Sun, J. Cheng, X. Wu, H. Xu, Adv. Mater. 37 (2025) 2500913, https://doi.org/10.1002/adma.202500913 doi: 10.1002/adma.202500913

    202. [202]

      J. -P. Jeon, Y. J. Kim, S. H. Joo, H. -J. Noh, S. K. Kwak, J. -B. Baek, Angew. Chem. Int. Ed. 62 (2023) e202217416, https://doi.org/10.1002/anie.202217416 doi: 10.1002/anie.202217416

    203. [203]

      H. He, R. Shen, Y. Yan, D. Chen, Z. Liu, L. Hao, X. Zhang, P. Zhang, X. Li, Chem. Sci. 15 (2024) 20002, https://doi.org/10.1039/D4SC07028C doi: 10.1039/D4SC07028C

    204. [204]

      X. -X. Wang, C. -R. Zhang, R. -X. Bi, Z. -H. Peng, A. -M. Song, R. Zhang, H. -X. He, J. -X. Qi, J. -W. Gong, C. -P. Niu, et al., Adv. Funct. Mater. 35 (2025) 2421623, https://doi.org/10.1002/adfm.202421623 doi: 10.1002/adfm.202421623

    205. [205]

      E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang, D. Jiang, Chem 5 (2019) 1632, https://doi.org/10.1016/j.chempr.2019.04.015 doi: 10.1016/j.chempr.2019.04.015

    206. [206]

      K. Huang, J. Bai, R. Shen, X. Li, C. Qin, P. Zhang, X. Li, Adv. Funct. Mater. 33 (2023) 2307300, https://doi.org/10.1002/adfm.202307300 doi: 10.1002/adfm.202307300

    207. [207]

      R. Shen, C. Huang, L. Hao, G. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4 doi: 10.1038/s41467-025-57662-4

    208. [208]

      R. Shen, C. Qin, L. Hao, X. Li, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2305397, https://doi.org/10.1002/adma.202305397 doi: 10.1002/adma.202305397

    209. [209]

      S. Xie, R. Liu, N. Liu, H. Xu, X. Chen, X. Wang, D. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202416771, https://doi.org/10.1002/anie.202416771 doi: 10.1002/anie.202416771

    210. [210]

      B. Zhang, K. Li, R. Li, S. Wang, L. Kang, J. Mater. Sci. Technol. 206 (2025) 257, https://doi.org/10.1016/j.jmst.2024.04.028 doi: 10.1016/j.jmst.2024.04.028

    211. [211]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y doi: 10.1007/s40843-023-2725-y

    212. [212]

      R. Shen, N. Li, C. Qin, X. Li, P. Zhang, X. Li, J. Tang, Adv. Funct. Mater. 33 (2023) 2301463, https://doi.org/10.1002/adfm.202301463 doi: 10.1002/adfm.202301463

    213. [213]

      G. Ding, Z. Wang, J. Zhang, P. Wang, L. Chen, G. Liao, EcoEnergy 2 (2024) 22, https://doi.org/10.1002/ece2.25 doi: 10.1002/ece2.25

    214. [214]

      Y. Dong, B. Wang, D. Xie, J. Lv, J. Cui, Z. Bao, G. Xu, W. Shen, EcoEnergy 2 (2024) 489, https://doi.org/10.1002/ece2.54 doi: 10.1002/ece2.54

    215. [215]

      R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649, https://doi.org/10.1002/adma.202303649 doi: 10.1002/adma.202303649

    216. [216]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668 doi: 10.1002/adma.202107668

    217. [217]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094 doi: 10.1016/j.jmst.2024.12.094

    218. [218]

      J. Yu, X. Li, J. Fu, K. Dai, Sci. China Mater. 67 (2024) 379, https://doi.org/10.1007/s40843-024-2779-5 doi: 10.1007/s40843-024-2779-5

    219. [219]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600 doi: 10.1002/adma.202310600

    220. [220]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys-Chim. Sin. 41 (2025), https://doi.org/10.1016/j.actphy.2025.100065 doi: 10.1016/j.actphy.2025.100065

    221. [221]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288 doi: 10.1002/adma.202400288

    222. [222]

      Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S. -W. Yang, X. Liu, J. Am. Chem. Soc. 145 (2023) 8364, https://doi.org/10.1021/jacs.2c11893 doi: 10.1021/jacs.2c11893

    223. [223]

      X. Ding, T. Wang, Q. Zhi, T. Zheng, Y. Jin, H. Liu, H. Wang, D. Qi, P. A. Stuzhin, J. Jiang, Sci. Bull. 70 (2025) 464, https://doi.org/10.1016/j.scib.2024.11.024 doi: 10.1016/j.scib.2024.11.024

    224. [224]

      S. Mao, Y. Zhang, Y. Wang, S. Zhang, S. Liu, W. Chen, J. Zhou, X. Li, Adv. Mater. n/a (2025) 2507668, https://doi.org/10.1002/adma.202507668 doi: 10.1002/adma.202507668

    225. [225]

      L. Hao, R. Shen, G. Liang, M. Kang, C. Huang, P. Zhang, X. Li, Appl. Catal. B Environ. Energy 348 (2024) 123837, https://doi.org/10.1016/j.apcatb.2024.123837 doi: 10.1016/j.apcatb.2024.123837

    226. [226]

      J. Bai, M. Zhang, F. Si, Y. Li, G. Liang, T. Hou, Y. Li, Adv. Funct. Mater. 35 (2025) 2420218, https://doi.org/10.1002/adfm.202420218 doi: 10.1002/adfm.202420218

    227. [227]

      Y. Xu, J. -P. Dong, L. Wang, R. -L. Geng, R. Wang, Y. -N. Si, S. -Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 64 (2025) e202501391, https://doi.org/10.1002/anie.202501391 doi: 10.1002/anie.202501391

    228. [228]

      Q. Xu, J. Han, F. Tian, X. Zhao, J. Rong, J. Zhang, P. She, J. -S. Qin, H. Rao, J. Am. Chem. Soc. 147 (2025) 10587, https://doi.org/10.1021/jacs.5c00432 doi: 10.1021/jacs.5c00432

    229. [229]

      K. Maeda, K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655, https://doi.org/10.1021/jz1007966 doi: 10.1021/jz1007966

    230. [230]

      W. Li, J. -J. Li, Z. -F. Liu, H. -Y. Ma, P. -F. Fang, R. Xiong, J. -H. Wei, Rare Metals 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5 doi: 10.1007/s12598-023-02419-5

    231. [231]

      T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387, https://doi.org/10.1038/s41929-019-0242-6 doi: 10.1038/s41929-019-0242-6

    232. [232]

      Y. Li, X. Song, G. Zhang, L. Wang, Y. Liu, W. Chen, L. Chen, ChemSusChem 15 (2022) e202200901, https://doi.org/10.1002/cssc.202200901 doi: 10.1002/cssc.202200901

    233. [233]

      S. Ma, T. Deng, Z. Li, Z. Zhang, J. Jia, Q. Li, G. Wu, H. Xia, S. -W. Yang, X. Liu, Angew. Chem. Int. Ed. 61 (2022) e202208919, https://doi.org/10.1002/anie.202208919 doi: 10.1002/anie.202208919

    234. [234]

      J. Cheng, Y. Wu, W. Zhang, J. Zhang, L. Wang, M. Zhou, F. Fan, X. Wu, H. Xu, Adv. Mater. 36 (2024) 2305313, https://doi.org/10.1002/adma.202305313 doi: 10.1002/adma.202305313

    235. [235]

      S. Yang, H. Lv, H. Zhong, D. Yuan, X. Wang, R. Wang, Angew. Chem. Int. Ed. 61 (2022) e202115655, https://doi.org/10.1002/anie.202115655 doi: 10.1002/anie.202115655

    236. [236]

      Y. Zhong, W. Dong, S. Ren, L. Li, Adv. Mater. 36 (2024) 2308251, https://doi.org/10.1002/adma.202308251 doi: 10.1002/adma.202308251

    237. [237]

      Y. Li, L. Yang, H. He, L. Sun, H. Wang, X. Fang, Y. Zhao, D. Zheng, Y. Qi, Z. Li, W. Deng, Nat. Commun. 13 (2022) 1355, https://doi.org/10.1038/s41467-022-29076-z doi: 10.1038/s41467-022-29076-z

    238. [238]

      F. Liu, Y. He, X. Liu, Z. Wang, H. -L. Liu, X. Zhu, C. -C. Hou, Y. Weng, Q. Zhang, Y. Chen, ACS Catal. 12 (2022) 9494, https://doi.org/10.1021/acscatal.2c02173 doi: 10.1021/acscatal.2c02173

    239. [239]

      F. Ma, Q. Tang, S. Xi, G. Li, T. Chen, X. Ling, Y. Lyu, Y. Liu, X. Zhao, Y. Zhou, J. Wang, Chin. J. Catal. 48 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64422-5 doi: 10.1016/s1872-2067(23)64422-5

    240. [240]

      J. Bai, R. Shen, G. Liang, C. Qin, D. Xu, H. Hu, X. Li, Chin. J. Catal. 59 (2024) 225, https://doi.org/10.1016/s1872-2067(23)64627-3 doi: 10.1016/s1872-2067(23)64627-3

    241. [241]

      M. Wang, Y. Li, D. Yan, H. Hu, Y. Song, X. Su, J. Sun, S. Xiao, Y. Gao, Chin. J. Catal. 65 (2024) 103, https://doi.org/10.1016/s1872-2067(24)60113-0 doi: 10.1016/s1872-2067(24)60113-0

    242. [242]

      M. Wang, Z. Wang, M. Shan, J. Wang, Z. Qiu, J. Song, Z. Li, Chem. Mater. 35 (2023) 5368, https://doi.org/10.1021/acs.chemmater.3c00556 doi: 10.1021/acs.chemmater.3c00556

    243. [243]

      Z. Zhao, X. Chen, B. Li, S. Zhao, L. Niu, Z. Zhang, Y. Chen, Adv. Sci. 9 (2022) 2203832, https://doi.org/10.1002/advs.202203832 doi: 10.1002/advs.202203832

    244. [244]

      S. Ma, Z. Li, Y. Hou, J. Li, Z. Zhang, T. Deng, G. Wu, R. Wang, S. -W. Yang, X. Liu, Angew. Chem. Int. Ed. 64 (2025) e202501869, https://doi.org/10.1002/anie.202501869 doi: 10.1002/anie.202501869

    245. [245]

      Z. Luo, S. Zhu, H. Xue, W. Yang, F. Zhang, F. Xu, W. Lin, H. Wang, X. Chen, Angew. Chem. Int. Ed. 64 (2025) e202420217, https://doi.org/10.1002/anie.202420217 doi: 10.1002/anie.202420217

    246. [246]

      K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 7 (2016) 11470, https://doi.org/10.1038/ncomms11470 doi: 10.1038/ncomms11470

    247. [247]

      Y. Yang, C. Wang, Y. Li, K. Liu, H. Ju, J. Wang, R. Tao, J. Mater. Sci. Technol. 200 (2024) 185, https://doi.org/10.1016/j.jmst.2024.02.062 doi: 10.1016/j.jmst.2024.02.062

    248. [248]

      J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie, X. Sun, I. Marriam, X. Zhang, Adv. Energy Mater. 14 (2024) 2400740, https://doi.org/10.1002/aenm.202400740 doi: 10.1002/aenm.202400740

    249. [249]

      Y. Zhang, H. Xu, Giant 20 (2024) 100335, https://doi.org/ 10.1016/j.giant.2024.100335 doi: 10.1016/j.giant.2024.100335

    250. [250]

      H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 61 (2022) e202202328, https://doi.org/10.1002/anie.202202328 doi: 10.1002/anie.202202328

    251. [251]

      J. -N. Chang, Q. Li, J. -W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. -L. Li, Y. -Q. Lan, Angew. Chem. Int. Ed. 62 (2023) e202218868, https://doi.org/10.1002/anie.202218868 doi: 10.1002/anie.202218868

    252. [252]

      C. Wu, Z. Teng, C. Yang, F. Chen, H. B. Yang, L. Wang, H. Xu, B. Liu, G. Zheng, Q. Han, Adv. Mater. 34 (2022) 2110266, https://doi.org/10.1002/adma.202110266 doi: 10.1002/adma.202110266

    253. [253]

      G. Pan, X. Hou, Z. Liu, C. Yang, J. Long, G. Huang, J. Bi, Y. Yu, L. Li, ACS Catal. 12 (2022) 14911, https://doi.org/10.1021/acscatal.2c03878 doi: 10.1021/acscatal.2c03878

    254. [254]

      L. Li, L. Xu, Z. Hu, J. C. Yu, Adv. Funct. Mater. 31 (2021) 2106120, https://doi.org/10.1002/adfm.202106120 doi: 10.1002/adfm.202106120

    255. [255]

      C. Shao, Q. He, M. Zhang, L. Jia, Y. Ji, Y. Hu, Y. Li, W. Huang, Y. Li, Chin. J. Catal. 46 (2023) 28, https://doi.org/10.1016/s1872-2067(22)64205-0 doi: 10.1016/s1872-2067(22)64205-0

    256. [256]

      S. Zhou, H. Hu, H. Hu, Q. Jiang, H. Xie, C. Li, S. Gao, Y. Kong, Y. Hu, Sci. China Mater. 66 (2023) 1837, https://doi.org/10.1007/s40843-022-2337-7 doi: 10.1007/s40843-022-2337-7

    257. [257]

      L. Guo, L. Gong, Y. Yang, Z. Huang, X. Liu, F. Luo, Angew. Chem. Int. Ed. 64 (2025) e202414658, https://doi.org/10.1002/anie.202414658 doi: 10.1002/anie.202414658

    258. [258]

      Y. Peng, L. Yuan, K. -K. Liu, Z. -J. Guan, S. Jin, Y. Fang, Angew. Chem. Int. Ed. 64 (2025) e202423055, https://doi.org/10.1002/anie.202423055 doi: 10.1002/anie.202423055

    259. [259]

      D. Yang, H. Yu, T. He, S. Zuo, X. Liu, H. Yang, B. Ni, H. Li, L. Gu, D. Wang, X. Wang, Nat. Commun. 10 (2019) 3844, https://doi.org/10.1038/s41467-019-11817-2 doi: 10.1038/s41467-019-11817-2

    260. [260]

      H. -W. Zhu, R. -T. Guo, C. Liu, H. -F. Cui, M. -Y. Liu, W. -G. Pan, J. Mater. Chem. A 12 (2024) 21677, https://doi.org/10.1039/D4TA03676J doi: 10.1039/D4TA03676J

    261. [261]

      J. Ran, M. Jaroniec, S. -Z. Qiao, Adv. Mater. 30 (2018) 1704649, https://doi.org/10.1002/adma.201704649 doi: 10.1002/adma.201704649

    262. [262]

      R. Lu, Y. Liu, Z. Wang, EcoEnergy 2 (2024) 695, https://doi.org/10.1002/ece2.67 doi: 10.1002/ece2.67

    263. [263]

      S. Mohata, P. Majumder, R. Banerjee, Chem. Soc. Rev. 54 (2025) 6062, https://doi.org/10.1039/d5cs00106d doi: 10.1039/d5cs00106d

    264. [264]

      Z. Fu, X. Wang, A. M. Gardner, X. Wang, S. Y. Chong, G. Neri, A. J. Cowan, L. Liu, X. Li, A. Vogel, et al., Chem. Sci. 11 (2020) 543, https://doi.org/10.1039/C9SC03800K doi: 10.1039/C9SC03800K

    265. [265]

      X. Chen, Q. Dang, R. Sa, L. Li, L. Li, J. Bi, Z. Zhang, J. Long, Y. Yu, Z. Zou, Chem. Sci. 11 (2020) 6915, https://doi.org/10.1039/D0SC01747G doi: 10.1039/D0SC01747G

    266. [266]

      S. Yang, R. Sa, H. Zhong, H. Lv, D. Yuan, R. Wang, Adv. Funct. Mater. 32 (2022) 2110694, https://doi.org/10.1002/adfm.202110694 doi: 10.1002/adfm.202110694

    267. [267]

      M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J. -L. Wang, D. -Q. Yuan, Y. -Q. Lan, Angew. Chem. Int. Ed. 58 (2019) 12392, https://doi.org/10.1002/anie.201906890 doi: 10.1002/anie.201906890

    268. [268]

      W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 141 (2019) 7615, https://doi.org/10.1021/jacs.9b02997 doi: 10.1021/jacs.9b02997

    269. [269]

      Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu, J. Wang, Nat. Commun. 14 (2023) 1147, https://doi.org/10.1038/s41467-023-36779-4 doi: 10.1038/s41467-023-36779-4

    270. [270]

      M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, et al., Nat. Commun. 14 (2023) 2473, https://doi.org/10.1038/s41467-023-37545-2 doi: 10.1038/s41467-023-37545-2

    271. [271]

      Y. Fu, X. Zhu, L. Huang, X. Zhang, F. Zhang, W. Zhu, Appl. Catal. B Environ. Energy 239 (2018) 46, https://doi.org/10.1016/j.apcatb.2018.08.004 doi: 10.1016/j.apcatb.2018.08.004

    272. [272]

      M. Kou, W. Liu, Y. Wang, J. Huang, Y. Chen, Y. Zhou, Y. Chen, M. Ma, K. Lei, H. Xie, P. K. Wong, L. Ye, Appl. Catal. B Environ. Energy 291 (2021) 120146, https://doi.org/10.1016/j.apcatb.2021.120146 doi: 10.1016/j.apcatb.2021.120146

    273. [273]

      R. K. Yadav, A. Kumar, N. -J. Park, K. -J. Kong, J. -O. Baeg, J. Mater. Chem. A 4 (2016) 9413, https://doi.org/10.1039/C6TA01625A doi: 10.1039/C6TA01625A

    274. [274]

      W. Lin, F. Lin, J. Lin, Z. Xiao, D. Yuan, Y. Wang, J. Am. Chem. Soc. 146 (2024) 16229, https://doi.org/10.1021/jacs.4c04185 doi: 10.1021/jacs.4c04185

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  21
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-12-15
  • 收稿日期:  2025-08-08
  • 接受日期:  2025-08-28
  • 修回日期:  2025-08-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章