Citation: Zihan Cheng, Kai Jiang, Jun Jiang, Henggang Wang, Hengwei Lin. Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100169. doi: 10.1016/j.actphy.2025.100169 shu

Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation

  • Integrating stimuli-responsive luminescence with dynamic emission properties offers a powerful strategy to enhance information encryption through multi-level authentication systems. By rationally tuning the singlet-triplet energy gap (ΔEST) of a material, simultaneous activation of phosphorescence (Phos) and delayed fluorescence (DF) can be achieved, enabling programmable dynamic afterglow behavior. In this work, we report the first carbon dot (CD)-based thermoresponsive dynamic afterglow material, synthesized via in situ covalent immobilization of CDs within a cyanuric acid matrix. The resulting system demonstrates a thermally driven green-to-blue afterglow transition across a wide temperature range (273.15–423.15 K), exhibiting dual-mode thermochromic afterglow (TCA) and time-resolved afterglow (TRA) characteristics. Notably, a blue-to-green afterglow transition occurs above the threshold temperature of 348.15 K, where TRA dominates due to temperature-dependent exciton redistribution. This synergistic TCA-TRA interplay endows the material with unprecedented dynamic afterglow modulation capabilities. Structural and photophysical analyses confirm that covalent fixation reduces the ΔEST of CDs from 0.46 to 0.28 eV, as designed. This ΔEST engineering enables thermal control over the Phos/DF equilibrium, directly governing the observed dynamic emission. Finally, the potential applications of the prepared material in thermal monitoring and high-security information protection are also demonstrated.
  • 加载中
    1. [1]

      R. Gao, X. Fang, D. Yan, J. Mater. Chem. C 7 (12) (2019) 3399, https://doi.org/10.1039/C9TC00348G.  doi: 10.1039/C9TC00348G

    2. [2]

      Q. Cheng, A. Hao, P. Xing, P. Adv. Colloid Interface Sci. 286 (2020) 102301, https://doi.org/10.1016/j.cis.2020.102301.  doi: 10.1016/j.cis.2020.102301

    3. [3]

      G. Guan, M. Wu, M.-Y. Han, Adv. Funct. Mater. 30 (2) (2020) 1903439, https://doi.org/10.1002/adfm.201903439.  doi: 10.1002/adfm.201903439

    4. [4]

      J. Zhang, B. He, Y. Hu, P. Alam, H. Zhang, J. W. Y. Lam, B. Z. Tang, Adv. Mater. 33 (32) (2021) 2008071, https://doi.org/10.1002/adma.202008071.  doi: 10.1002/adma.202008071

    5. [5]

      H. Zhou, J. Han, J. Cuan, Y. Zhou, Chem. Eng. J. 431 (2022) 134170, https://doi.org/10.1016/j.cej.2021.134170.  doi: 10.1016/j.cej.2021.134170

    6. [6]

      B. Yan, TrAC Trends Anal. Chem. 170 (2024) 117430, https://doi.org/10.1016/j.trac.2023.117430.  doi: 10.1016/j.trac.2023.117430

    7. [7]

      L. Liang, N. Chen, Y. Jia, Q. Ma, J. Wang, Q. Yuan, W. Tan, Nano Res. 12 (6) (2019) 1279, https://doi.org/10.1007/s12274-019-2343-6.  doi: 10.1007/s12274-019-2343-6

    8. [8]

      Q. Ma, J. Wang, Z. Li, X. Lv, L. Liang, Q. Yuan, Small 15 (32) (2019) 1804969, https://doi.org/10.1002/smll.201804969.  doi: 10.1002/smll.201804969

    9. [9]

      B. Zhou, G. Xiao, D. Yan, Adv. Mater. 33 (16) (2021) 2007571, https://doi.org/10.1002/adma.202007571.  doi: 10.1002/adma.202007571

    10. [10]

      G. Zhou, Y. Mao, J. Zhang, Q. Ren, M. S. Molokeev, Z. Xia, X.-M. Zhang, Adv. Funct. Mater. 35 (3) (2025) 2413524, https://doi.org/10.1002/adfm.202413524.  doi: 10.1002/adfm.202413524

    11. [11]

      Z. Xu, W. Chen, K. Chen, S. Lin, Z. Wu, G. Deng, J. Chen, M. Tayyab, Y. Xiong, M.-D. Li, D. Wang, Z. An, B. Z. Tang, Adv. Mater. 37 (20) (2025) 2418778, https://doi.org/10.1002/adma.202418778.  doi: 10.1002/adma.202418778

    12. [12]

      Z. Wang, Z. Ding, Y. Yang, L. Hu, W. Wu, Y. Gao, Y. Wei, X. Zhang, G. Jiang, Chem. Eng. J. 457 (2023) 141293, https://doi.org/10.1016/j.cej.2023.141293.  doi: 10.1016/j.cej.2023.141293

    13. [13]

      Y. Xie, X. Zhao, H. Wang, Y. Tian, C. Liu, J. Wu, J. Cui, Z. Zhou, J. Chen, X. Chen, Angew. Chem. Int. Ed. 64 (2) (2025) e202414846, https://doi.org/10.1002/anie.202414846.  doi: 10.1002/anie.202414846

    14. [14]

      W. Zhao, Z. He, J. W. Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 1 (4) (2016) 592, https://doi.org/10.1016/j.chempr.2016.08.010.  doi: 10.1016/j.chempr.2016.08.010

    15. [15]

      W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 5 (12) (2020) 869, https://doi.org/10.1038/s41578-020-0223-z.  doi: 10.1038/s41578-020-0223-z

    16. [16]

      C. M. Marian, WIREs Comput. Mol. Sci. 2 (2) (2012) 187, https://doi.org/10.1002/wcms.83.  doi: 10.1002/wcms.83

    17. [17]

      Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 46 (3) (2017) 915, https://doi.org/10.1039/C6CS00368K.  doi: 10.1039/C6CS00368K

    18. [18]

      D. Sasikumar, A. T. John, J. Sunny, M. Hariharan, Chem. Soc. Rev. 49 (17) (2020) 6122, https://doi.org/10.1039/D0CS00484G.  doi: 10.1039/D0CS00484G

    19. [19]

      S. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 28 (45) (2016) 9920, https://doi.org/10.1002/adma.201602604.  doi: 10.1002/adma.201602604

    20. [20]

      S. Hirata, Adv. Opt. Mater. 5 (17) (2017) 1700116, https://doi.org/10.1002/adom.201700116.  doi: 10.1002/adom.201700116

    21. [21]

      F. Ni, Z. Zhu, X. Tong, M. Xie, Q. Zhao, C. Zhong, Y. Zou, C. Yang, Chem. Sci. 9 (28) (2018) 6150, https://doi.org/10.1039/C8SC01485J.  doi: 10.1039/C8SC01485J

    22. [22]

      L. Huang, L. Liu, X. Li, H. Hu, M. Chen, Q. Yang, Z. Ma, X. Jia, Angew. Chem. Int. Ed. 58 (46) (2019) 16445, https://doi.org/10.1002/anie.201908567.  doi: 10.1002/anie.201908567

    23. [23]

      C. A. M. Salla, G. Farias, M. Rouzières, P. Dechambenoit, F. Durola, H. Bock, B. de Souza, Angew. Chem. Int. Ed. 58 (21) (2019) 6982, https://doi.org/10.1002/anie.201901672.  doi: 10.1002/anie.201901672

    24. [24]

      X. Zhang, K. C. Chong, Z. Xie, B. Liu, Angew. Chem. Int. Ed. 62 (45) (2023) e202310335, https://doi.org/10.1002/anie.202310335.  doi: 10.1002/anie.202310335

    25. [25]

      S. Zong, B. Wang, J. Zhang, X. Yu, Y. Zhou, Y. Chen, T. Zhang, J. Li, Angew. Chem. Int. Ed. 64 (7) (2025) e202420156, https://doi.org/10.1002/anie.202420156.  doi: 10.1002/anie.202420156

    26. [26]

      J. Sun, Y. Liu, Y. Han, W. Li, N. Wang, L. Zhang, Y. Zhang, F. Deng, D. Wang, X. Zhang, Angew. Chem. Int. Ed. 64 (2) (2025) e202415042, https://doi.org/10.1002/anie.202415042.  doi: 10.1002/anie.202415042

    27. [27]

      J. Sun, Z. Sun, Z. Wang, N. Wang, Y. Han, L. Zhang, B. Zhang, X. Zhang, Adv. Opt. Mater. 12 (12) (2024) 2302542, https://doi.org/10.1002/adom.202302542.  doi: 10.1002/adom.202302542

    28. [28]

      J. Tan, Q. Li, S. Meng, Y. Li, J. Yang, Y. Ye, Z. Tang, S. Qu, X. Ren, Adv. Mater. 33 (16) (2021) 2006781, https://doi.org/10.1002/adma.202006781.  doi: 10.1002/adma.202006781

    29. [29]

      X. Ran, Y. Pan, L. Qiao, L. Cai, Y. Jia, Z. Liu, L. Guo, Carbon 234 (2025) 119980, https://doi.org/10.1016/j.carbon.2024.119980.  doi: 10.1016/j.carbon.2024.119980

    30. [30]

      Y. Wu, Z. Li, Z. Zhou, Z. Zhang, D. Zhu, X. Dong, F. Xiu, W. Huang, J. Liu, Adv. Opt. Mater. 13 (12) (2025) 2403274, https://doi.org/10.1002/adom.202403274.  doi: 10.1002/adom.202403274

    31. [31]

      Z. Ran, H. Jia, Z. Zhong, H. Yang, Y. Zhu, Y. Li, J. Liu, X. Zhang, J. Zhuang, B. Lei, C. Hu, Nano Lett. 25 (17) (2025) 6993, https://doi.org/10.1021/acs.nanolett.5c00723.  doi: 10.1021/acs.nanolett.5c00723

    32. [32]

      Y. Liu, D. Cheng, B. Wang, J. Yang, Y. Hao, J. Tan, Q. Li, S. Qu, Adv. Mater. 36 (31) (2024) 2403775, https://doi.org/10.1002/adma.202403775.  doi: 10.1002/adma.202403775

    33. [33]

      L. Ai, W. Xiang, J. Xiao, H. Liu, J. Yu, L. Zhang, X. Wu, X. Qu, S. Lu, Adv. Mater. 36 (27) (2024) 2401220, https://doi.org/10.1002/adma.202401220.  doi: 10.1002/adma.202401220

    34. [34]

      Q. Lou, N. Chen, J. Zhu, K. Liu, C. Li, Y. Zhu, W. Xu, X. Chen, Z. Song, C. Liang, C.-X. Shan, J. Hu, Adv. Mater. 35 (20) (2023) 2211858, https://doi.org/10.1002/adma.202211858.  doi: 10.1002/adma.202211858

    35. [35]

      Y. Sun, J. Liu, X. Pang, X. Zhang, J. Zhuang, H. Zhang, C. Hu, M. Zheng, B. Lei, Y. Liu, J. Mater. Chem. C 8 (17) (2020) 5744, https://doi.org/10.1039/D0TC00507J.  doi: 10.1039/D0TC00507J

    36. [36]

      K. Jiang, Y. Wang, C. Cai, H. Lin, Chem. Mater. 29 (11) (2017) 4866, https://doi.org/10.1021/acs.chemmater.7b00831.  doi: 10.1021/acs.chemmater.7b00831

    37. [37]

      Y. Wang, K. Jiang, J. Du, L. Zheng, Y. Li, Z. Li, H. Lin, Nano-Micro Lett. 13 (1) (2021) 198, https://doi.org/10.1007/s40820-021-00718-z.  doi: 10.1007/s40820-021-00718-z

    38. [38]

      Q. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi, A. Gong, M. Yang, Chem. Mater. 28 (22) (2016) 8221, https://doi.org/10.1021/acs.chemmater.6b03049.  doi: 10.1021/acs.chemmater.6b03049

    39. [39]

      Z. Zhou, E. V. Ushakova, E. Liu, X. Bao, D. Li, D. Zhou, Z. Tan, S. Qu, A. L. Rogach, Nanoscale 12 (20) (2020) 10987, https://doi.org/10.1039/D0NR02639E.  doi: 10.1039/D0NR02639E

    40. [40]

      Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, J. Shi, Nat. Commun. 9 (1) (2018) 734, https://doi.org/10.1038/s41467-018-03144-9.  doi: 10.1038/s41467-018-03144-9

    41. [41]

      K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 54 (18) (2015) 5360, https://doi.org/10.1002/anie.201501193.  doi: 10.1002/anie.201501193

    42. [42]

      I. Reva, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 151 (2015) 232, https://doi.org/10.1016/j.saa.2015.06.070.  doi: 10.1016/j.saa.2015.06.070

    43. [43]

      T.-E. Chien, K.-L. Li, P.-Y. Lin, J.-L. Lin, Langmuir 32 (21) (2016) 5306, https://doi.org/10.1021/acs.langmuir.6b01334.  doi: 10.1021/acs.langmuir.6b01334

    44. [44]

      Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song, D. Shen, Chem. Commun. 49 (51) (2013) 5751, https://doi.org/10.1039/C3CC42600A.  doi: 10.1039/C3CC42600A

    45. [45]

      Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 26 (47) (2014) 7931, https://doi.org/10.1002/adma.201402532.  doi: 10.1002/adma.201402532

    46. [46]

      X. Xiong, F. Song, J. Wang, Y. Zhang, Y. Xue, L. Sun, N. Jiang, P. Gao, L. Tian, X. Peng, J. Am. Chem. Soc. 136 (27) (2014) 9590, https://doi.org/10.1021/ja502292p.  doi: 10.1021/ja502292p

    47. [47]

      T.-Y. Li, S.-J. Zheng, P. I. Djurovich, M. E. Thompson, Chem. Rev. 124 (7) (2024) 4332, https://doi.org/10.1021/acs.chemrev.3c00761.  doi: 10.1021/acs.chemrev.3c00761

    48. [48]

      H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (7428) (2012) 234, https://doi.org/10.1038/nature11687.  doi: 10.1038/nature11687

    49. [49]

      Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photon. 14 (10) (2020) 643, https://doi.org/10.1038/s41566-020-0667-0.  doi: 10.1038/s41566-020-0667-0

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    3. [3]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    4. [4]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    5. [5]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    6. [6]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    7. [7]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    8. [8]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    20. [20]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return