Ni诱导的Pt 5d-H 1s反键轨道调控以增强析氢和尿素氧化

柳如艳 倪振瑞 RuzimuradovOlim TurayevKhayit 刘涛 余罗 邝攀勇

引用本文: 柳如艳, 倪振瑞, RuzimuradovOlim, TurayevKhayit, 刘涛, 余罗, 邝攀勇. Ni诱导的Pt 5d-H 1s反键轨道调控以增强析氢和尿素氧化[J]. 物理化学学报, 2025, 41(12): 100159. doi: 10.1016/j.actphy.2025.100159 shu
Citation:  Ruyan Liu, Zhenrui Ni, Olim Ruzimuradov, Khayit Turayev, Tao Liu, Luo Yu, Panyong Kuang. Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation[J]. Acta Physico-Chimica Sinica, 2025, 41(12): 100159. doi: 10.1016/j.actphy.2025.100159 shu

Ni诱导的Pt 5d-H 1s反键轨道调控以增强析氢和尿素氧化

    通讯作者: 邝攀勇, kuangpanyong@cug.edu.cn
  • 基金项目:

    国家重点研发计划项目 2022YFB3803600

    国家自然科学基金 22272153

    国家自然科学基金 22479132

    国家自然科学基金 22238009

    国家自然科学基金 U23A20102

    国家自然科学基金 22361142704

    国家自然科学基金 22309168

    湖北省自然科学基金 2022CFA001

    湖北省重点研发计划项目 2023BAB113

摘要: 尽管氢气具有高能量密度、环境友好性和可再生性等优势,但其高效生产受限于析氧反应(Oxygen Evolution Reaction,OER)的缓慢动力学。本研究报道了一种Pt@PtNi3核壳合金电催化剂,通过引入Ni元素调控Pt 5d反键轨道占据,同步提升析氢反应(Hydrogen Evolution Reaction,HER)与尿素氧化反应(Urea Oxidation Reaction,UOR)活性。对于HER,优化后的Pt@PtNi3-500在酸性条件下实现10 mA cm-2电流密度仅需21 mV的低过电位,同时在碱性条件下的UOR起始电位为1.27 V,性能均优于单金属Pt和Ni催化剂。当被应用于酸碱非对称电解(HER/UOR)时,相较于传统碱性水分解(HER/OER),Pt@PtNi3-500的制氢能耗降低了68.3%。机理研究表明Pt@PtNi3中适量的Ni掺杂增加了Pt 5d–H 1s反键轨道占据,既强化了H+吸附又削弱了过强的H*结合,同时还降低了*NH2脱氢能垒,从而协同促进了氢气生成与尿素分解。该研究为高效生物质氧化辅助制氢合金电催化剂设计提供了新思路。

English

    1. [1]

      A. A. Feidenhans'l, Y. N. Regmi, C. Wei, D. Xia, J. Kibsgaard, L. A. King, Chem. Rev. 124 (2024) 5617, https://doi.org/10.1021/acs.chemrev.3c00712. doi: 10.1021/acs.chemrev.3c00712

    2. [2]

      J. C. Ehlers, A. A. Feidenhans'l, K. T. Therkildsen, G. O. Larrazábal, ACS Energy Lett. 8 (2023) 1502, https://doi.org/10.1021/acsenergylett.2c02897. doi: 10.1021/acsenergylett.2c02897

    3. [3]

      W. Yu, M. H. Richter, P. Buabthong, I. A. Moreno-Hernandez, C. G. Read, E. Simonoff, B. S. Brunschwig, N. S. Lewis, Energy Environ. Sci. 14 (2021) 6007, https://doi.org/10.1039/D1EE02809J. doi: 10.1039/D1EE02809J

    4. [4]

      H.-M. Zhang, S.-F. Zhang, L.-H. Zuo, J.-K. Li, J.-X. Guo, P. Wang, J.-F. Sun, L. Dai, Rare Met. 43 (2024) 2371, https://doi.org/10.1007/s12598-024-02619-7. doi: 10.1007/s12598-024-02619-7

    5. [5]

      W. Yu, J. L. Young, T. G. Deutsch, N. S. Lewis, ACS Appl. Mater. Interfaces 13 (2021) 57350, https://doi.org/10.1021/acsami.1c18243. doi: 10.1021/acsami.1c18243

    6. [6]

      B. Zhong, B. Cheng, Y. Zhu, R. Ding, P. Kuang, J. Yu, J. Colloid Interface Sci. 629 (2023) 846, https://doi.org/10.1016/j.jcis.2022.09.007. doi: 10.1016/j.jcis.2022.09.007

    7. [7]

      J. Y. Loh, J. J. Foo, F. M. Yap, H. Liang, W.-J. Ong, Chin. J. Catal. 58 (2024) 37, https://doi.org/10.1016/S1872-2067(23)64581-4. doi: 10.1016/S1872-2067(23)64581-4

    8. [8]

      S.-Y. Lu, W. Dou, J. Zhang, L. Wang, C. Wu, H. Yi, R. Wang, M. Jin, Acta Phys.-Chim. Sin. 40 (2024) 2308024, https://doi.org/10.3866/PKU.WHXB202308024. doi: 10.3866/PKU.WHXB202308024

    9. [9]

      B.-J. Zhang, B. Chang, S.-P. Qiu, G. Zhao, X. Wang, X.-J. Xu, L. Mu, W.-B. Liao, X.-J. Dong, Rare Met. 43 (2024) 2613, https://doi.org/10.1007/s12598-023-02587-4. doi: 10.1007/s12598-023-02587-4

    10. [10]

      B. Zhong, S. Wan, P. Kuang, B. Cheng, L. Yu, J. Yu, Appl. Catal. B 340 (2024) 123195, https://doi.org/10.1016/j.apcatb.2023.123195. doi: 10.1016/j.apcatb.2023.123195

    11. [11]

      C. Qin, S. Chen, H. Gomaa, M. A. Shenashen, S. A. El-Safty, Q. Liu, C. An, X. Liu, Q. Deng, N. Hu, Acta Phys.-Chim. Sin. 40 (2024) 2307059, https://doi.org/10.3866/PKU.WHXB202307059. doi: 10.3866/PKU.WHXB202307059

    12. [12]

      P. A. Kempler, Z. P. Ifkovits, W. Yu, A. I. Carim, N. S. Lewis, Energy Environ. Sci. 14 (2021) 414, https://doi.org/10.1039/D0EE02796K. doi: 10.1039/D0EE02796K

    13. [13]

      Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 50 (2021) 1495, https://doi.org/10.1039/D0CS01239D. doi: 10.1039/D0CS01239D

    14. [14]

      Y. Guo, S. Li, W. Abebe, J. Wang, L. Shi, D. Liu, S. Zhao, Chin. J. Catal. 67 (2024) 21, https://doi.org/10.1016/S1872-2067(24)60153-1. doi: 10.1016/S1872-2067(24)60153-1

    15. [15]

      W. Zhao, C. Luo, Y. Lin, G.-B. Wang, H. M. Chen, P. Kuang, J. Yu, ACS Catal. 12 (2022) 5540, https://doi.org/10.1021/acscatal.2c00851. doi: 10.1021/acscatal.2c00851

    16. [16]

      S. Xu, Q. Wu, B.-A. Lu, T. Tang, J.-N. Zhang, J.-S. Hu, Acta Phys.-Chim. Sin. 39 (2023) 2209001, https://doi.org/10.3866/pku.Whxb202209001. doi: 10.3866/pku.Whxb202209001

    17. [17]

      P. Kuang, Y. Wang, B. Zhu, F. Xia, C. W. Tung, J. Wu, H. M. Chen, J. Yu, Adv. Mater. 33 (2021) 2008599, https://doi.org/10.1002/adma.202008599. doi: 10.1002/adma.202008599

    18. [18]

      S. Battiato, L. Bruno, A. Terrasi, S. Mirabella, ACS Appl. Energy Mater. 5 (2022) 2391, https://doi.org/10.1021/acsaem.1c03880. doi: 10.1021/acsaem.1c03880

    19. [19]

      R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934. doi: 10.1126/science.1211934

    20. [20]

      Z. Li, X. Liu, Q. Yu, X. Qu, J. Wan, Z. Xiao, J. Chi, L. Wang, Chin. J. Catal. 63 (2024) 33, https://doi.org/10.1016/S1872-2067(24)60076-8. doi: 10.1016/S1872-2067(24)60076-8

    21. [21]

      T. Zhang, X. Yan, G. Zhou, K. Wang, J. Zhang, H. Zhang, J. Guo, Appl. Surf. Sci. 636 (2023) 157860, https://doi.org/10.1016/j.apsusc.2023.157860. doi: 10.1016/j.apsusc.2023.157860

    22. [22]

      X. Sun, R. Wang, Q. Wang, K. Ostrikov, Inorg. Chem. Front. 11 (2024) 1540, https://doi.org/10.1039/D3QI01993D. doi: 10.1039/D3QI01993D

    23. [23]

      Y. Qiao, J. Cui, F. Qian, X. Xue, X. Zhang, H. Zhang, W. Liu, X. Li, Q. Chen, ACS Appl. Nano Mater. 5 (2022) 318, https://doi.org/10.1021/acsanm.1c03046. doi: 10.1021/acsanm.1c03046

    24. [24]

      F. Guo, Z. Zou, Z. Zhang, T. Zeng, Y. Tan, R. Chen, W. Wu, N. Cheng, X. Sun, J. Mater. Chem. A 9 (2021) 5468, https://doi.org/10.1039/D0TA10500G. doi: 10.1039/D0TA10500G

    25. [25]

      E. B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, J.-S. Yu, ACS Appl. Mater. Interfaces 14 (2022) 25246, https://doi.org/10.1021/acsami.2c00398. doi: 10.1021/acsami.2c00398

    26. [26]

      J. Chen, G. Qian, H. Zhang, S. Feng, Y. Mo, L. Luo, S. Yin, Adv. Funct. Mater. 32 (2022) 2107597, https://doi.org/10.1002/adfm.202107597. doi: 10.1002/adfm.202107597

    27. [27]

      W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater. 11 (2021) 2003192, https://doi.org/10.1002/aenm.202003192. doi: 10.1002/aenm.202003192

    28. [28]

      A. E. Noua, D. Kaya, F. Karadag, A. Ekicibil, J. Nanopart. Res. 26 (2023) 8, https://doi.org/10.1007/s11051-023-05918-9. doi: 10.1007/s11051-023-05918-9

    29. [29]

      Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 140 (2018) 9046, https://doi.org/10.1021/jacs.8b04770. doi: 10.1021/jacs.8b04770

    30. [30]

      M. Zhou, H. Li, A. Long, B. Zhou, F. Lu, F. Zhang, F. Zhan, Z. Zhang, W. Xie, X. Zeng, D. Yi, X. Wang, Adv. Energy Mater. 11 (2021) 2101789, https://doi.org/10.1002/aenm.202101789. doi: 10.1002/aenm.202101789

    31. [31]

      N. Zhang, Q. Shao, X. Xiao, X. Huang, Adv. Funct. Mater. 29 (2019) 1808161, https://doi.org/10.1002/adfm.201808161. doi: 10.1002/adfm.201808161

    32. [32]

      H. Huang, L. Fu, W. Kong, H. Ma, X. Zhang, J. Cai, S. Wang, Z. Xie, S. Xie, Small 18 (2022) 2201333, https://doi.org/10.1002/smll.202201333. doi: 10.1002/smll.202201333

    33. [33]

      C. Liu, Z. Wei, M. Cao, R. Cao, Nano Res. 17 (2024) 4844, https://doi.org/10.1007/s12274-024-6454-3. doi: 10.1007/s12274-024-6454-3

    34. [34]

      B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, T. Yao, Energy Environ. Sci. 15 (2022) 102, https://doi.org/10.1039/D1EE02518J. doi: 10.1039/D1EE02518J

    35. [35]

      F. S. M. Ali, R. L. Arevalo, M. Vandichel, F. Speck, E.-L. Rautama, H. Jiang, O. Sorsa, K. Mustonen, S. Cherevko, T. Kallio, Appl. Catal. B 315 (2022) 121541, https://doi.org/10.1016/j.apcatb.2022.121541. doi: 10.1016/j.apcatb.2022.121541

    36. [36]

      G. Zhao, K. Lu, Y. Li, F. Lu, P. Gao, B. Nan, L. Li, Y. Zhang, P. Xu, X. Liu, L. Chen, Chin. J. Catal. 62 (2024) 156, https://doi.org/10.1016/S1872-2067(24)60067-7. doi: 10.1016/S1872-2067(24)60067-7

    37. [37]

      C. Li, L. Zhang, Y. Zhang, Y. Zhou, J. Sun, X. Ouyang, X. Wang, J. Zhu, Y. Fu, Chem. Eng. J. 428 (2022) 131085, https://doi.org/10.1016/j.cej.2021.131085. doi: 10.1016/j.cej.2021.131085

    38. [38]

      C. Zhang, X. Liang, R. Xu, C. Dai, B. Wu, G. Yu, B. Chen, X. Wang, N. Liu, Adv. Funct. Mater. 31 (2021) 2008298, https://doi.org/10.1002/adfm.202008298. doi: 10.1002/adfm.202008298

    39. [39]

      P. Kuang, Z. Ni, B. Zhu, Y. Lin, J. Yu, Adv. Mater. 35 (2023) 2303030, https://doi.org/10.1002/adma.202303030. doi: 10.1002/adma.202303030

    40. [40]

      Z. Ni, C. Luo, B. Cheng, P. Kuang, Y. Li, J. Yu, Appl. Catal. B 321 (2023) 122072, https://doi.org/10.1016/j.apcatb.2022.122072. doi: 10.1016/j.apcatb.2022.122072

    41. [41]

      R. Li, P. Kuang, S. Wageh, A. A. Al-Ghamdi, H. Tang, J. Yu, Chem. Eng. J. 453 (2023) 139797, https://doi.org/10.1016/j.cej.2022.139797. doi: 10.1016/j.cej.2022.139797

    42. [42]

      M. Li, Y. Song, X. Wan, Y. Li, Y. Luo, Y. He, B. Xia, H. Zhou, M. Shao, Acta Phys.-Chim. Sin. 40 (2024) 2306007, https://doi.org/10.3866/PKU.WHXB202306007. doi: 10.3866/PKU.WHXB202306007

    43. [43]

      E. A. Moges, C.-Y. Chang, M.-C. Tsai, W.-N. Su, B. J. Hwang, EES Catal. 1 (2023) 413, https://doi.org/10.1039/D3EY00017F. doi: 10.1039/D3EY00017F

    44. [44]

      V. M. Zemtsova, A. G. Oshchepkov, E. R. Savinova, ACS Catal. 13 (2023) 13466, https://doi.org/10.1021/acscatal.3c03126. doi: 10.1021/acscatal.3c03126

    45. [45]

      Q.-X. Huang, F. Wang, Y. Liu, B.-Y. Zhang, F.-Y. Guo, Z.-Q. Jia, H. Wang, T.-X. Yang, H.-T. Wu, F.-Z. Ren, T.-F. Yi, Rare Met. 43 (2024) 3607, https://doi.org/10.1007/s12598-024-02668-y. doi: 10.1007/s12598-024-02668-y

    46. [46]

      X. Feng, K. Guo, C. Jia, B. Liu, S. Ci, J. Chen, Z. Wen, Acta Phys.-Chim. Sin. 40 (2024) 2303050, https://doi.org/10.3866/pku.Whxb202303050. doi: 10.3866/pku.Whxb202303050

    47. [47]

      G. Wang, J. Chen, Y. Li, J. Jia, P. Cai, Z. Wen, Chem. Commun. 54 (2018) 2603, https://doi.org/10.1039/C7CC09653D. doi: 10.1039/C7CC09653D

    48. [48]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867

    49. [49]

      R. Li, C. W. Tung, B. Zhu, Y. Lin, F. Z. Tian, T. Liu, H. M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176. doi: 10.1016/j.jcis.2024.06.176

    50. [50]

      Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B 314 (2022) 121503, https://doi.org/10.1016/j.apcatb.2022.121503. doi: 10.1016/j.apcatb.2022.121503

    51. [51]

      K. Wang, Y. Wang, S. Geng, Y. Wang, S. Song, Adv. Funct. Mater. 32 (2022) 2113399, https://doi.org/10.1002/adfm.202113399. doi: 10.1002/adfm.202113399

    52. [52]

      H. Jin, Z. Xu, Z.-Y. Hu, Z. Yin, Z. Wang, Z. Deng, P. Wei, S. Feng, S. Dong, J. Liu, S. Luo, Z. Qiu, L. Zhou, L. Mai, B.-L. Su, D. Zhao, Y. Liu, Nat. Commun. 14 (2023) 1518, https://doi.org/10.1038/s41467-023-37268-4. doi: 10.1038/s41467-023-37268-4

    53. [53]

      P. Wang, Q. Shao, J. Guo, L. Bu, X. Huang, Chem. Mater. 32 (2020) 3144, https://doi.org/10.1021/acs.chemmater.0c00172. doi: 10.1021/acs.chemmater.0c00172

    54. [54]

      H. Luo, V. Y. Yukuhiro, P. S. Fernández, J. Feng, P. Thompson, R. R. Rao, R. Cai, S. Favero, S. J. Haigh, J. R. Durrant, I. E. L. Stephens, M.-M. Titirici, ACS Catal. 12 (2022) 14492, https://doi.org/10.1021/acscatal.2c03907. doi: 10.1021/acscatal.2c03907

    55. [55]

      J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Agnew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518. doi: 10.1002/anie.202202518

    56. [56]

      W. Li, Z. Ni, O. Akdim, T. Liu, B. Zhu, P. Kuang, J. Yu, Adv. Mater. 37 (2025) 2503742, https://doi.org/10.1002/adma.202503742. doi: 10.1002/adma.202503742

    57. [57]

      Q. Jia, Z. Zhao, L. Cao, J. Li, S. Ghoshal, V. Davies, E. Stavitski, K. Attenkofer, Z. Liu, M. Li, X. Duan, S. Mukerjee, T. Mueller, Y. Huang, Nano Lett. 18 (2018) 798, https://doi.org/10.1021/acs.nanolett.7b04007. doi: 10.1021/acs.nanolett.7b04007

    58. [58]

      H. Gong, D. Zhang, T. Liu, P. Kuang, J. Yu, Small 21 (2025) 2407790, https://doi.org/10.1002/smll.202407790. doi: 10.1002/smll.202407790

    59. [59]

      D. Zhang, H. Gong, T. Liu, J. Yu, P. Kuang, J. Colloid Interface Sci. 672 (2024) 423, https://doi.org/10.1016/j.jcis.2024.06.023. doi: 10.1016/j.jcis.2024.06.023

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  23
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-12-15
  • 收稿日期:  2025-07-24
  • 接受日期:  2025-08-14
  • 修回日期:  2025-08-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章