Citation: Ruyan Liu, Zhenrui Ni, Olim Ruzimuradov, Khayit Turayev, Tao Liu, Luo Yu, Panyong Kuang. Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation[J]. Acta Physico-Chimica Sinica, 2025, 41(12): 100159. doi: 10.1016/j.actphy.2025.100159
Ni诱导的Pt 5d-H 1s反键轨道调控以增强析氢和尿素氧化
-
关键词:
- 析氢反应
- / 尿素氧化反应
- / Pt@PtNi3核壳合金
- / 酸碱非对称催化
- / 反键轨道占据
English
Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation

-
-
[1]
A. A. Feidenhans'l, Y. N. Regmi, C. Wei, D. Xia, J. Kibsgaard, L. A. King, Chem. Rev. 124 (2024) 5617, https://doi.org/10.1021/acs.chemrev.3c00712. doi: 10.1021/acs.chemrev.3c00712
-
[2]
J. C. Ehlers, A. A. Feidenhans'l, K. T. Therkildsen, G. O. Larrazábal, ACS Energy Lett. 8 (2023) 1502, https://doi.org/10.1021/acsenergylett.2c02897. doi: 10.1021/acsenergylett.2c02897
-
[3]
W. Yu, M. H. Richter, P. Buabthong, I. A. Moreno-Hernandez, C. G. Read, E. Simonoff, B. S. Brunschwig, N. S. Lewis, Energy Environ. Sci. 14 (2021) 6007, https://doi.org/10.1039/D1EE02809J. doi: 10.1039/D1EE02809J
-
[4]
H.-M. Zhang, S.-F. Zhang, L.-H. Zuo, J.-K. Li, J.-X. Guo, P. Wang, J.-F. Sun, L. Dai, Rare Met. 43 (2024) 2371, https://doi.org/10.1007/s12598-024-02619-7. doi: 10.1007/s12598-024-02619-7
-
[5]
W. Yu, J. L. Young, T. G. Deutsch, N. S. Lewis, ACS Appl. Mater. Interfaces 13 (2021) 57350, https://doi.org/10.1021/acsami.1c18243. doi: 10.1021/acsami.1c18243
-
[6]
B. Zhong, B. Cheng, Y. Zhu, R. Ding, P. Kuang, J. Yu, J. Colloid Interface Sci. 629 (2023) 846, https://doi.org/10.1016/j.jcis.2022.09.007. doi: 10.1016/j.jcis.2022.09.007
-
[7]
J. Y. Loh, J. J. Foo, F. M. Yap, H. Liang, W.-J. Ong, Chin. J. Catal. 58 (2024) 37, https://doi.org/10.1016/S1872-2067(23)64581-4. doi: 10.1016/S1872-2067(23)64581-4
-
[8]
S.-Y. Lu, W. Dou, J. Zhang, L. Wang, C. Wu, H. Yi, R. Wang, M. Jin, Acta Phys.-Chim. Sin. 40 (2024) 2308024, https://doi.org/10.3866/PKU.WHXB202308024. doi: 10.3866/PKU.WHXB202308024
-
[9]
B.-J. Zhang, B. Chang, S.-P. Qiu, G. Zhao, X. Wang, X.-J. Xu, L. Mu, W.-B. Liao, X.-J. Dong, Rare Met. 43 (2024) 2613, https://doi.org/10.1007/s12598-023-02587-4. doi: 10.1007/s12598-023-02587-4
-
[10]
B. Zhong, S. Wan, P. Kuang, B. Cheng, L. Yu, J. Yu, Appl. Catal. B 340 (2024) 123195, https://doi.org/10.1016/j.apcatb.2023.123195. doi: 10.1016/j.apcatb.2023.123195
-
[11]
C. Qin, S. Chen, H. Gomaa, M. A. Shenashen, S. A. El-Safty, Q. Liu, C. An, X. Liu, Q. Deng, N. Hu, Acta Phys.-Chim. Sin. 40 (2024) 2307059, https://doi.org/10.3866/PKU.WHXB202307059. doi: 10.3866/PKU.WHXB202307059
-
[12]
P. A. Kempler, Z. P. Ifkovits, W. Yu, A. I. Carim, N. S. Lewis, Energy Environ. Sci. 14 (2021) 414, https://doi.org/10.1039/D0EE02796K. doi: 10.1039/D0EE02796K
-
[13]
Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 50 (2021) 1495, https://doi.org/10.1039/D0CS01239D. doi: 10.1039/D0CS01239D
-
[14]
Y. Guo, S. Li, W. Abebe, J. Wang, L. Shi, D. Liu, S. Zhao, Chin. J. Catal. 67 (2024) 21, https://doi.org/10.1016/S1872-2067(24)60153-1. doi: 10.1016/S1872-2067(24)60153-1
-
[15]
W. Zhao, C. Luo, Y. Lin, G.-B. Wang, H. M. Chen, P. Kuang, J. Yu, ACS Catal. 12 (2022) 5540, https://doi.org/10.1021/acscatal.2c00851. doi: 10.1021/acscatal.2c00851
-
[16]
S. Xu, Q. Wu, B.-A. Lu, T. Tang, J.-N. Zhang, J.-S. Hu, Acta Phys.-Chim. Sin. 39 (2023) 2209001, https://doi.org/10.3866/pku.Whxb202209001. doi: 10.3866/pku.Whxb202209001
-
[17]
P. Kuang, Y. Wang, B. Zhu, F. Xia, C. W. Tung, J. Wu, H. M. Chen, J. Yu, Adv. Mater. 33 (2021) 2008599, https://doi.org/10.1002/adma.202008599. doi: 10.1002/adma.202008599
-
[18]
S. Battiato, L. Bruno, A. Terrasi, S. Mirabella, ACS Appl. Energy Mater. 5 (2022) 2391, https://doi.org/10.1021/acsaem.1c03880. doi: 10.1021/acsaem.1c03880
-
[19]
R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934. doi: 10.1126/science.1211934
-
[20]
Z. Li, X. Liu, Q. Yu, X. Qu, J. Wan, Z. Xiao, J. Chi, L. Wang, Chin. J. Catal. 63 (2024) 33, https://doi.org/10.1016/S1872-2067(24)60076-8. doi: 10.1016/S1872-2067(24)60076-8
-
[21]
T. Zhang, X. Yan, G. Zhou, K. Wang, J. Zhang, H. Zhang, J. Guo, Appl. Surf. Sci. 636 (2023) 157860, https://doi.org/10.1016/j.apsusc.2023.157860. doi: 10.1016/j.apsusc.2023.157860
-
[22]
X. Sun, R. Wang, Q. Wang, K. Ostrikov, Inorg. Chem. Front. 11 (2024) 1540, https://doi.org/10.1039/D3QI01993D. doi: 10.1039/D3QI01993D
-
[23]
Y. Qiao, J. Cui, F. Qian, X. Xue, X. Zhang, H. Zhang, W. Liu, X. Li, Q. Chen, ACS Appl. Nano Mater. 5 (2022) 318, https://doi.org/10.1021/acsanm.1c03046. doi: 10.1021/acsanm.1c03046
-
[24]
F. Guo, Z. Zou, Z. Zhang, T. Zeng, Y. Tan, R. Chen, W. Wu, N. Cheng, X. Sun, J. Mater. Chem. A 9 (2021) 5468, https://doi.org/10.1039/D0TA10500G. doi: 10.1039/D0TA10500G
-
[25]
E. B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, J.-S. Yu, ACS Appl. Mater. Interfaces 14 (2022) 25246, https://doi.org/10.1021/acsami.2c00398. doi: 10.1021/acsami.2c00398
-
[26]
J. Chen, G. Qian, H. Zhang, S. Feng, Y. Mo, L. Luo, S. Yin, Adv. Funct. Mater. 32 (2022) 2107597, https://doi.org/10.1002/adfm.202107597. doi: 10.1002/adfm.202107597
-
[27]
W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater. 11 (2021) 2003192, https://doi.org/10.1002/aenm.202003192. doi: 10.1002/aenm.202003192
-
[28]
A. E. Noua, D. Kaya, F. Karadag, A. Ekicibil, J. Nanopart. Res. 26 (2023) 8, https://doi.org/10.1007/s11051-023-05918-9. doi: 10.1007/s11051-023-05918-9
-
[29]
Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 140 (2018) 9046, https://doi.org/10.1021/jacs.8b04770. doi: 10.1021/jacs.8b04770
-
[30]
M. Zhou, H. Li, A. Long, B. Zhou, F. Lu, F. Zhang, F. Zhan, Z. Zhang, W. Xie, X. Zeng, D. Yi, X. Wang, Adv. Energy Mater. 11 (2021) 2101789, https://doi.org/10.1002/aenm.202101789. doi: 10.1002/aenm.202101789
-
[31]
N. Zhang, Q. Shao, X. Xiao, X. Huang, Adv. Funct. Mater. 29 (2019) 1808161, https://doi.org/10.1002/adfm.201808161. doi: 10.1002/adfm.201808161
-
[32]
H. Huang, L. Fu, W. Kong, H. Ma, X. Zhang, J. Cai, S. Wang, Z. Xie, S. Xie, Small 18 (2022) 2201333, https://doi.org/10.1002/smll.202201333. doi: 10.1002/smll.202201333
-
[33]
C. Liu, Z. Wei, M. Cao, R. Cao, Nano Res. 17 (2024) 4844, https://doi.org/10.1007/s12274-024-6454-3. doi: 10.1007/s12274-024-6454-3
-
[34]
B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, T. Yao, Energy Environ. Sci. 15 (2022) 102, https://doi.org/10.1039/D1EE02518J. doi: 10.1039/D1EE02518J
-
[35]
F. S. M. Ali, R. L. Arevalo, M. Vandichel, F. Speck, E.-L. Rautama, H. Jiang, O. Sorsa, K. Mustonen, S. Cherevko, T. Kallio, Appl. Catal. B 315 (2022) 121541, https://doi.org/10.1016/j.apcatb.2022.121541. doi: 10.1016/j.apcatb.2022.121541
-
[36]
G. Zhao, K. Lu, Y. Li, F. Lu, P. Gao, B. Nan, L. Li, Y. Zhang, P. Xu, X. Liu, L. Chen, Chin. J. Catal. 62 (2024) 156, https://doi.org/10.1016/S1872-2067(24)60067-7. doi: 10.1016/S1872-2067(24)60067-7
-
[37]
C. Li, L. Zhang, Y. Zhang, Y. Zhou, J. Sun, X. Ouyang, X. Wang, J. Zhu, Y. Fu, Chem. Eng. J. 428 (2022) 131085, https://doi.org/10.1016/j.cej.2021.131085. doi: 10.1016/j.cej.2021.131085
-
[38]
C. Zhang, X. Liang, R. Xu, C. Dai, B. Wu, G. Yu, B. Chen, X. Wang, N. Liu, Adv. Funct. Mater. 31 (2021) 2008298, https://doi.org/10.1002/adfm.202008298. doi: 10.1002/adfm.202008298
-
[39]
P. Kuang, Z. Ni, B. Zhu, Y. Lin, J. Yu, Adv. Mater. 35 (2023) 2303030, https://doi.org/10.1002/adma.202303030. doi: 10.1002/adma.202303030
-
[40]
Z. Ni, C. Luo, B. Cheng, P. Kuang, Y. Li, J. Yu, Appl. Catal. B 321 (2023) 122072, https://doi.org/10.1016/j.apcatb.2022.122072. doi: 10.1016/j.apcatb.2022.122072
-
[41]
R. Li, P. Kuang, S. Wageh, A. A. Al-Ghamdi, H. Tang, J. Yu, Chem. Eng. J. 453 (2023) 139797, https://doi.org/10.1016/j.cej.2022.139797. doi: 10.1016/j.cej.2022.139797
-
[42]
M. Li, Y. Song, X. Wan, Y. Li, Y. Luo, Y. He, B. Xia, H. Zhou, M. Shao, Acta Phys.-Chim. Sin. 40 (2024) 2306007, https://doi.org/10.3866/PKU.WHXB202306007. doi: 10.3866/PKU.WHXB202306007
-
[43]
E. A. Moges, C.-Y. Chang, M.-C. Tsai, W.-N. Su, B. J. Hwang, EES Catal. 1 (2023) 413, https://doi.org/10.1039/D3EY00017F. doi: 10.1039/D3EY00017F
-
[44]
V. M. Zemtsova, A. G. Oshchepkov, E. R. Savinova, ACS Catal. 13 (2023) 13466, https://doi.org/10.1021/acscatal.3c03126. doi: 10.1021/acscatal.3c03126
-
[45]
Q.-X. Huang, F. Wang, Y. Liu, B.-Y. Zhang, F.-Y. Guo, Z.-Q. Jia, H. Wang, T.-X. Yang, H.-T. Wu, F.-Z. Ren, T.-F. Yi, Rare Met. 43 (2024) 3607, https://doi.org/10.1007/s12598-024-02668-y. doi: 10.1007/s12598-024-02668-y
-
[46]
X. Feng, K. Guo, C. Jia, B. Liu, S. Ci, J. Chen, Z. Wen, Acta Phys.-Chim. Sin. 40 (2024) 2303050, https://doi.org/10.3866/pku.Whxb202303050. doi: 10.3866/pku.Whxb202303050
-
[47]
G. Wang, J. Chen, Y. Li, J. Jia, P. Cai, Z. Wen, Chem. Commun. 54 (2018) 2603, https://doi.org/10.1039/C7CC09653D. doi: 10.1039/C7CC09653D
-
[48]
R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867
-
[49]
R. Li, C. W. Tung, B. Zhu, Y. Lin, F. Z. Tian, T. Liu, H. M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176. doi: 10.1016/j.jcis.2024.06.176
-
[50]
Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B 314 (2022) 121503, https://doi.org/10.1016/j.apcatb.2022.121503. doi: 10.1016/j.apcatb.2022.121503
-
[51]
K. Wang, Y. Wang, S. Geng, Y. Wang, S. Song, Adv. Funct. Mater. 32 (2022) 2113399, https://doi.org/10.1002/adfm.202113399. doi: 10.1002/adfm.202113399
-
[52]
H. Jin, Z. Xu, Z.-Y. Hu, Z. Yin, Z. Wang, Z. Deng, P. Wei, S. Feng, S. Dong, J. Liu, S. Luo, Z. Qiu, L. Zhou, L. Mai, B.-L. Su, D. Zhao, Y. Liu, Nat. Commun. 14 (2023) 1518, https://doi.org/10.1038/s41467-023-37268-4. doi: 10.1038/s41467-023-37268-4
-
[53]
P. Wang, Q. Shao, J. Guo, L. Bu, X. Huang, Chem. Mater. 32 (2020) 3144, https://doi.org/10.1021/acs.chemmater.0c00172. doi: 10.1021/acs.chemmater.0c00172
-
[54]
H. Luo, V. Y. Yukuhiro, P. S. Fernández, J. Feng, P. Thompson, R. R. Rao, R. Cai, S. Favero, S. J. Haigh, J. R. Durrant, I. E. L. Stephens, M.-M. Titirici, ACS Catal. 12 (2022) 14492, https://doi.org/10.1021/acscatal.2c03907. doi: 10.1021/acscatal.2c03907
-
[55]
J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Agnew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518. doi: 10.1002/anie.202202518
-
[56]
W. Li, Z. Ni, O. Akdim, T. Liu, B. Zhu, P. Kuang, J. Yu, Adv. Mater. 37 (2025) 2503742, https://doi.org/10.1002/adma.202503742. doi: 10.1002/adma.202503742
-
[57]
Q. Jia, Z. Zhao, L. Cao, J. Li, S. Ghoshal, V. Davies, E. Stavitski, K. Attenkofer, Z. Liu, M. Li, X. Duan, S. Mukerjee, T. Mueller, Y. Huang, Nano Lett. 18 (2018) 798, https://doi.org/10.1021/acs.nanolett.7b04007. doi: 10.1021/acs.nanolett.7b04007
-
[58]
H. Gong, D. Zhang, T. Liu, P. Kuang, J. Yu, Small 21 (2025) 2407790, https://doi.org/10.1002/smll.202407790. doi: 10.1002/smll.202407790
-
[59]
D. Zhang, H. Gong, T. Liu, J. Yu, P. Kuang, J. Colloid Interface Sci. 672 (2024) 423, https://doi.org/10.1016/j.jcis.2024.06.023. doi: 10.1016/j.jcis.2024.06.023
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 23
- HTML全文浏览量: 4

下载: