Citation: Jiangyuan Qiu,  TaoYu,  Junxin Chen,  Wenxuan Li,  Xiaoxuan Zhang,  jinsheng Li,  Rui Guo,  Zaiyin Huang,  Xuanwen Liu. Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100157. doi: 10.1016/j.actphy.2025.100157 shu

Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis

  • Corresponding author: Rui Guo,  Zaiyin Huang,  Xuanwen Liu, 
  • Received Date: 24 May 2025
    Revised Date: 10 August 2025

  • Although the design of heterojunction piezoelectric catalysts has significantly enhanced catalytic activity, the regulatory mechanisms of heterojunction interfaces on surface potential wells during piezoelectric processes and their impact on carrier migration still lack systematic investigation. This work constructs an enhance interface interaction heterointerface between amorphous FeOOH and Bi12O17Cl2 (BOC) in Bi12O17Cl2@FeOOH through a self-assembly strategy. ‌This strong interfacial interaction significantly enhances interface polarity can substantially suppress the stress-responsive capability of surface charges on BOC (maximum reduction reached as high as 63%–98% of original value). This significantly reduces the depth of surface potential wells during piezoelectric processes, thereby effectively weakening piezoelectric charge confinement while promoting charge transfer. Concurrently, Bi–O–Fe chemical bonds formed at the interface and establish charge transport channels. These synergistic mechanisms elevate the H2O2 production rate to 3.04 mmol g−1 h−1 for participate in the piezoelectric self-Fenton reaction and the removal rate of total organic carbon increased 3 fold (18.6% vs. 55.8%).
  • 加载中
    1. [1]

      L. Gao, Y. Cao, L. Wang, S. Li, Front. Environ. Sci. Eng. 16(6) (2021) 77, https://doi.org/10.1007/s11783-021-1511-6.

    2. [2]

      F. Qin, J. Qiu, Q. Feng, K. Chen, X. Li, X. Zhang, C. Zuo, L. Feng, H. Zhu, Appl. Surf. Sci. 648(2024) 158987, https://doi.org/10.1016/j.apsusc.2023.158987.

    3. [3]

      K. Hou, Z. Pi, F. Chen, L. He, F. Yao, S. Chen, X. Li, H. Dong, Q. Yang. J. Hazard. Mater. 435(2022) 128970, https://doi.org/10.1016/j.jhazmat.2022.128970.

    4. [4]

      Y. Wu, H. Che, B. Liu, Y. Ao, Small Struct.‌ 4(7) (2023) 2200371, https://doi.org/10.1002/sstr.202200371.

    5. [5]

      Z. Liang, Q. Yan, H. Ou, D. Li, Y. Zhang, J. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317394121, https://doi.org/10.1073/pnas.2317394121.

    6. [6]

      N. Tian, C. Hu, J. Wang, Y. Zhang, T. Ma, H. Huang, Coord. Chem. Rev. 463(2022) 214515, https://doi.org/10.1016/j.ccr.2022.214515.

    7. [7]

      P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32(29) (2020) 2001976, https://doi.org/10.1002/adma.202001976.

    8. [8]

      C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang, T. Ma, H. Huang, Adv. Funct. Mater. 33(29) (2023) 2301144, https://doi.org/10.1002/adfm.202301144.

    9. [9]

      L. Liu, M. Ruan, C. Wang, Z. Liu, Appl. Catal. B-Environ. Energy. 354(2024) 124117, https://doi.org/10.1016/j.apcatb.2024.124117.

    10. [10]

      S. Liu, B. Jing, C. Nie, Z. Ao, X. Duan, B. Lai, Y. Shao, S. Wang, T. An, Environ. Sci.-Nano 8(3) (2021) 784, https://doi.org/10.1039/D0EN01237H.

    11. [11]

      M. Ran, B. Du, W. Liu, Z. Liang, L. Liang, Y. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317435121, https://doi.org/10.1073/pnas.2317435121.

    12. [12]

      Y. Zhang, L. Wang, H. Huang, C. Hu, X. Zhang, C. Wang, Y. Zhang, Appl. Catal. B-Environ. 331(2023) 122714, https://doi.org/10.1016/j.apcatb.2023.122714.

    13. [13]

      P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Angew. Chem. Int. Ed. 59(38) (2020) 16517. https://doi.org/10.1002/anie.202007046.

    14. [14]

      F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan, Y. Zhu, Appl. Catal. B-Environ. 312(2022) 121438, https://doi.org/10.1016/j.apcatb.2022.121438.

    15. [15]

      R. Guo, X. Zhang, A. Kuklin, G. Peng, L. Jin, Y. Chen, A. Hans, Y. Zhang, J. Hazard. Mater. 490(2025) 137774, https://doi.org/10.1016/j.jhazmat.2025.137774.

    16. [16]

      X. Ning, D. Jia, S. Li, M. Khan, A. Hao, Rare Met. 42(9) (2023) 3034, https://doi.org/10.1007/s12598-023-02363-4.

    17. [17]

      R. Su, J. Zhang, V. Wong, D. Zhang, Y. Yang, Z. Luo, X. Wang, H. Wen, Y. Liu, J. Seidel, et al., Adv. Mater. 35(42) (2023) 2303018, https://doi.org/10.1002/adma.202303018.

    18. [18]

      X. Ning, A. Hao, X. Qiu, Adv. Funct. Mater. 35(2) (2025) 2413217, https://doi.org/10.1002/adfm.202413217.

    19. [19]

      F. Huang, W. Wang, G. Li, M. Humayun, Q. Yu, Y. Wang, C. Wang, J. Wang, Rare Met. 44(6) (2025) 3981, https://doi.org/10.1007/s12598-024-03203-9.

    20. [20]

      Q. Tang, R. Sanchis-Gual, N. Qin, H. Ye, S. Sevim, A. Veciana, C. Corral-Casas, K. Thodkar, J. Wu, B. J. Nelson, et al., J. Am. Chem. Soc. 147(10) (2025) 8289, https://doi.org/10.1021/jacs.4c15681.

    21. [21]

      T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, IEEE Trans. Dielectr. Electr. Insul. 15(1) (2008) 152, https://doi.org/10.1109/T-DEI.2008.4446746.

    22. [22]

      H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 5(2) (2022) 486, https://doi.org/10.1002/eem2.12237.

    23. [23]

      H. Zheng, Y. Wang, J. Liu, J. wang, K. Yan, K. Zhu, Appl. Catal. B-Environ. 341(2024) 123335, https://doi.org/10.1016/j.apcatb.2023.123335.

    24. [24]

      J. Qiu, X. Lei, B. Wang, H. Zhang, J. You, R. Guo, X. Liu, Coord. Chem. Rev. 519(2024) 216115, https://doi.org/10.1016/j.ccr.2024.216115.

    25. [25]

      Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(6) (2024) e202316410, https://doi.org/10.1002/anie.202316410.

    26. [26]

      X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Environ. Sci. Technol. 51(9) (2017) 5118, https://doi.org/10.1021/acs.est.6b05906.

    27. [27]

      J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19(22) (2023) 2208232, https://doi.org/10.1002/smll.202208232.

    28. [28]

      J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7(1) (2016) 11480, https://doi.org/10.1038/ncomms11480.

    29. [29]

      C. Zhu, Q. He, T. Sun, M. Xu, J. Wang, Q. jin, C. Chen, X. Duan, H. Xu, S. Wang, Chem. Eng. J. 464(2023) 142704, https://doi.org/10.1016/j.cej.2023.142704.

    30. [30]

      Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen, Y. Liu, L. Li, T. Wei, H. Li, J. Xia, Appl. Catal. B-Environ. 323(2023) 122148, https://doi.org/10.1016/j.apcatb.2022.122148.

    31. [31]

      L. Yu, X. Liu, H. Zhang, B. Zhou, Z. Chen, H. Li, L. Zhang, J. Am. Chem. Soc. 146(47) (2024) 32816, https://doi.org/10.1021/jacs.4c13254.

    32. [32]

      S. Zhou, H. He, J. Li, Z. Ye, Z. Liu, J. Shi, Y. Hu, W. Cai. Adv. Funct. Mater. 34(12) (2024) 2313770, https://doi.org/10.1002/adfm.202313770.

    33. [33]

      S. Guo, Z. Hu, M. Zhen, B. Gu, B. Shen, F. Dong, Appl. Catal. B-Environ. 264(2020) 118506, https://doi.org/10.1016/j.apcatb.2019.118506.

    34. [34]

      S. Nayak, G. Swain, K. Parida, ACS Applied Materials & Interfaces. 11(23) (2019) 20923, https://doi.org/10.1021/acsami.9b06511.

    35. [35]

      Y. Zhang, X. Zhai, N. Wang, J. Sun, F. Ma, K. Dou, P. Ju, J. Duan, B. Hou, J. Environ. Chem. Eng. 12(2) (2024) 112163, https://doi.org/10.1016/j.jece.2024.112163.

    36. [36]

      Y. Shi, H. Li, C. Mao, G. Zhan, Z. Yang, C. Ling, K. Wei, X. Liu, Z. Ai, L. ACS ES&T Eng. 2(6) (2022) 957, https://doi.org/10.1021/acsestengg.1c00466.

    37. [37]

      X. Lu, K. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428(2022) 131027, https://doi.org/10.1016/j.cej.2021.131027.

    38. [38]

      Q. Chai, Z. Liu, Z. Deng, Z. Peng, X. Chao, J. Lu, H. Huang, S. Zhang, Z. Yang, Nat. Commun. 16(1) (2025) 1633, https://doi.org/10.1038/s41467-025-56767-0.

    39. [39]

      S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu, N. Mushtaq, Y. Yang, K. Khan, P.D. Lund, M. Motola, W. Xu, Energy Environ. Mater. 7(3) (2024) e12606, https://doi.org/10.1002/eem2.12606.

    40. [40]

      J. Guo, Z. Lei, F. Wang, J. Xu, S. Xu, Chemosensors 8(3) (2020) 50, https://doi.org/10.3390/chemosensors8030050.

    41. [41]

      V.R. Khalilov, F.K. Chibirova, Chibirova. J. Phys. A Math. Theor. 40(24) (2007) 6469, https://doi.org/10.1088/1751-8113/40/24/013.

    42. [42]

      R. Sun, Z. Zhu, N. Tian, Y. Zhang, H. Huang, Angew. Chem. Int. Ed. 63(41) (2024) e202408862, https://doi.org/10.1002/anie.202408862.

    43. [43]

      J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36(49) (2024) 2412070, https://doi.org/10.1002/adma.202412070.

    44. [44]

      N. Chen, S. Che, Y.-H. Zhang, H. Li, Y. Li, X. He, Rare Met. 44(7) (2025) 4740, https://doi.org/10.1007/s12598-025-03295-x.

    45. [45]

      Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 5(1) (2014) 3038, https://doi.org/10.1038/ncomms4038.

    46. [46]

      R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 26(28) (2014) 4783, https://doi.org/10.1002/adma.201400428.

    47. [47]

      J. Qiu, H. Feng, Z. Chen, S. Ruan, Y.- Chen, T. Xu, J. Su, E. Ha, L. Wang, Rare Met. 41(6) (2022) 2074, https://doi.org/10.1007/s12598-021-01929-4.

    48. [48]

      W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang, H. Huang, Nano Energy 104(2022) 107906, https://doi.org/10.1016/j.nanoen.2022.107906.

    49. [49]

      J. Xie, C. Zhang, T.D. Waite, Water Res. 217(2022) 118425, https://doi.org/10.1016/j.watres.2022.118425.

    50. [50]

      W. Shi, W. Sun, Y. Liu, K. Zhang, H. Sun, X. Lin, Y. Hong, F. Guo, W. Shi, W. Sun, et al., J. Hazard. Mater. 436(2022) 129141, https://doi.org/10.1016/j.jhazmat.2022.129141.

    51. [51]

      J. Qiu, J. Chen, B. Xiao, X. Li, T. Wan, F. Qin, Y. Mi, Z. Huang, Catal. Lett. 150(1) (2020) 222, https://doi.org/10.1007/s10562-019-02920-6.

  • 加载中
    1. [1]

      Yun Chen Daijie Deng Li Xu Xingwang Zhu Henan Li Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-. doi: 10.1016/j.actphy.2025.100144

    2. [2]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    3. [3]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    4. [4]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    8. [8]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    13. [13]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    14. [14]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    15. [15]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return