Citation:
Jiangyuan Qiu, TaoYu, Junxin Chen, Wenxuan Li, Xiaoxuan Zhang, jinsheng Li, Rui Guo, Zaiyin Huang, Xuanwen Liu. Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100157.
doi:
10.1016/j.actphy.2025.100157
-
Although the design of heterojunction piezoelectric catalysts has significantly enhanced catalytic activity, the regulatory mechanisms of heterojunction interfaces on surface potential wells during piezoelectric processes and their impact on carrier migration still lack systematic investigation. This work constructs an enhance interface interaction heterointerface between amorphous FeOOH and Bi12O17Cl2 (BOC) in Bi12O17Cl2@FeOOH through a self-assembly strategy. This strong interfacial interaction significantly enhances interface polarity can substantially suppress the stress-responsive capability of surface charges on BOC (maximum reduction reached as high as 63%–98% of original value). This significantly reduces the depth of surface potential wells during piezoelectric processes, thereby effectively weakening piezoelectric charge confinement while promoting charge transfer. Concurrently, Bi–O–Fe chemical bonds formed at the interface and establish charge transport channels. These synergistic mechanisms elevate the H2O2 production rate to 3.04 mmol g−1 h−1 for participate in the piezoelectric self-Fenton reaction and the removal rate of total organic carbon increased 3 fold (18.6% vs. 55.8%).
-
-
-
[1]
L. Gao, Y. Cao, L. Wang, S. Li, Front. Environ. Sci. Eng. 16(6) (2021) 77, https://doi.org/10.1007/s11783-021-1511-6.
-
[2]
F. Qin, J. Qiu, Q. Feng, K. Chen, X. Li, X. Zhang, C. Zuo, L. Feng, H. Zhu, Appl. Surf. Sci. 648(2024) 158987, https://doi.org/10.1016/j.apsusc.2023.158987.
-
[3]
K. Hou, Z. Pi, F. Chen, L. He, F. Yao, S. Chen, X. Li, H. Dong, Q. Yang. J. Hazard. Mater. 435(2022) 128970, https://doi.org/10.1016/j.jhazmat.2022.128970.
-
[4]
Y. Wu, H. Che, B. Liu, Y. Ao, Small Struct. 4(7) (2023) 2200371, https://doi.org/10.1002/sstr.202200371.
-
[5]
Z. Liang, Q. Yan, H. Ou, D. Li, Y. Zhang, J. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317394121, https://doi.org/10.1073/pnas.2317394121.
-
[6]
N. Tian, C. Hu, J. Wang, Y. Zhang, T. Ma, H. Huang, Coord. Chem. Rev. 463(2022) 214515, https://doi.org/10.1016/j.ccr.2022.214515.
-
[7]
P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32(29) (2020) 2001976, https://doi.org/10.1002/adma.202001976.
-
[8]
C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang, T. Ma, H. Huang, Adv. Funct. Mater. 33(29) (2023) 2301144, https://doi.org/10.1002/adfm.202301144.
-
[9]
L. Liu, M. Ruan, C. Wang, Z. Liu, Appl. Catal. B-Environ. Energy. 354(2024) 124117, https://doi.org/10.1016/j.apcatb.2024.124117.
-
[10]
S. Liu, B. Jing, C. Nie, Z. Ao, X. Duan, B. Lai, Y. Shao, S. Wang, T. An, Environ. Sci.-Nano 8(3) (2021) 784, https://doi.org/10.1039/D0EN01237H.
-
[11]
M. Ran, B. Du, W. Liu, Z. Liang, L. Liang, Y. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317435121, https://doi.org/10.1073/pnas.2317435121.
-
[12]
Y. Zhang, L. Wang, H. Huang, C. Hu, X. Zhang, C. Wang, Y. Zhang, Appl. Catal. B-Environ. 331(2023) 122714, https://doi.org/10.1016/j.apcatb.2023.122714.
-
[13]
P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Angew. Chem. Int. Ed. 59(38) (2020) 16517. https://doi.org/10.1002/anie.202007046.
-
[14]
F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan, Y. Zhu, Appl. Catal. B-Environ. 312(2022) 121438, https://doi.org/10.1016/j.apcatb.2022.121438.
-
[15]
R. Guo, X. Zhang, A. Kuklin, G. Peng, L. Jin, Y. Chen, A. Hans, Y. Zhang, J. Hazard. Mater. 490(2025) 137774, https://doi.org/10.1016/j.jhazmat.2025.137774.
-
[16]
X. Ning, D. Jia, S. Li, M. Khan, A. Hao, Rare Met. 42(9) (2023) 3034, https://doi.org/10.1007/s12598-023-02363-4.
-
[17]
R. Su, J. Zhang, V. Wong, D. Zhang, Y. Yang, Z. Luo, X. Wang, H. Wen, Y. Liu, J. Seidel, et al., Adv. Mater. 35(42) (2023) 2303018, https://doi.org/10.1002/adma.202303018.
-
[18]
X. Ning, A. Hao, X. Qiu, Adv. Funct. Mater. 35(2) (2025) 2413217, https://doi.org/10.1002/adfm.202413217.
-
[19]
F. Huang, W. Wang, G. Li, M. Humayun, Q. Yu, Y. Wang, C. Wang, J. Wang, Rare Met. 44(6) (2025) 3981, https://doi.org/10.1007/s12598-024-03203-9.
-
[20]
Q. Tang, R. Sanchis-Gual, N. Qin, H. Ye, S. Sevim, A. Veciana, C. Corral-Casas, K. Thodkar, J. Wu, B. J. Nelson, et al., J. Am. Chem. Soc. 147(10) (2025) 8289, https://doi.org/10.1021/jacs.4c15681.
-
[21]
T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, IEEE Trans. Dielectr. Electr. Insul. 15(1) (2008) 152, https://doi.org/10.1109/T-DEI.2008.4446746.
-
[22]
H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 5(2) (2022) 486, https://doi.org/10.1002/eem2.12237.
-
[23]
H. Zheng, Y. Wang, J. Liu, J. wang, K. Yan, K. Zhu, Appl. Catal. B-Environ. 341(2024) 123335, https://doi.org/10.1016/j.apcatb.2023.123335.
-
[24]
J. Qiu, X. Lei, B. Wang, H. Zhang, J. You, R. Guo, X. Liu, Coord. Chem. Rev. 519(2024) 216115, https://doi.org/10.1016/j.ccr.2024.216115.
-
[25]
Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(6) (2024) e202316410, https://doi.org/10.1002/anie.202316410.
-
[26]
X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Environ. Sci. Technol. 51(9) (2017) 5118, https://doi.org/10.1021/acs.est.6b05906.
-
[27]
J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19(22) (2023) 2208232, https://doi.org/10.1002/smll.202208232.
-
[28]
J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7(1) (2016) 11480, https://doi.org/10.1038/ncomms11480.
-
[29]
C. Zhu, Q. He, T. Sun, M. Xu, J. Wang, Q. jin, C. Chen, X. Duan, H. Xu, S. Wang, Chem. Eng. J. 464(2023) 142704, https://doi.org/10.1016/j.cej.2023.142704.
-
[30]
Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen, Y. Liu, L. Li, T. Wei, H. Li, J. Xia, Appl. Catal. B-Environ. 323(2023) 122148, https://doi.org/10.1016/j.apcatb.2022.122148.
-
[31]
L. Yu, X. Liu, H. Zhang, B. Zhou, Z. Chen, H. Li, L. Zhang, J. Am. Chem. Soc. 146(47) (2024) 32816, https://doi.org/10.1021/jacs.4c13254.
-
[32]
S. Zhou, H. He, J. Li, Z. Ye, Z. Liu, J. Shi, Y. Hu, W. Cai. Adv. Funct. Mater. 34(12) (2024) 2313770, https://doi.org/10.1002/adfm.202313770.
-
[33]
S. Guo, Z. Hu, M. Zhen, B. Gu, B. Shen, F. Dong, Appl. Catal. B-Environ. 264(2020) 118506, https://doi.org/10.1016/j.apcatb.2019.118506.
-
[34]
S. Nayak, G. Swain, K. Parida, ACS Applied Materials & Interfaces. 11(23) (2019) 20923, https://doi.org/10.1021/acsami.9b06511.
-
[35]
Y. Zhang, X. Zhai, N. Wang, J. Sun, F. Ma, K. Dou, P. Ju, J. Duan, B. Hou, J. Environ. Chem. Eng. 12(2) (2024) 112163, https://doi.org/10.1016/j.jece.2024.112163.
-
[36]
Y. Shi, H. Li, C. Mao, G. Zhan, Z. Yang, C. Ling, K. Wei, X. Liu, Z. Ai, L. ACS ES&T Eng. 2(6) (2022) 957, https://doi.org/10.1021/acsestengg.1c00466.
-
[37]
X. Lu, K. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428(2022) 131027, https://doi.org/10.1016/j.cej.2021.131027.
-
[38]
Q. Chai, Z. Liu, Z. Deng, Z. Peng, X. Chao, J. Lu, H. Huang, S. Zhang, Z. Yang, Nat. Commun. 16(1) (2025) 1633, https://doi.org/10.1038/s41467-025-56767-0.
-
[39]
S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu, N. Mushtaq, Y. Yang, K. Khan, P.D. Lund, M. Motola, W. Xu, Energy Environ. Mater. 7(3) (2024) e12606, https://doi.org/10.1002/eem2.12606.
-
[40]
J. Guo, Z. Lei, F. Wang, J. Xu, S. Xu, Chemosensors 8(3) (2020) 50, https://doi.org/10.3390/chemosensors8030050.
-
[41]
V.R. Khalilov, F.K. Chibirova, Chibirova. J. Phys. A Math. Theor. 40(24) (2007) 6469, https://doi.org/10.1088/1751-8113/40/24/013.
-
[42]
R. Sun, Z. Zhu, N. Tian, Y. Zhang, H. Huang, Angew. Chem. Int. Ed. 63(41) (2024) e202408862, https://doi.org/10.1002/anie.202408862.
-
[43]
J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36(49) (2024) 2412070, https://doi.org/10.1002/adma.202412070.
-
[44]
N. Chen, S. Che, Y.-H. Zhang, H. Li, Y. Li, X. He, Rare Met. 44(7) (2025) 4740, https://doi.org/10.1007/s12598-025-03295-x.
-
[45]
Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 5(1) (2014) 3038, https://doi.org/10.1038/ncomms4038.
-
[46]
R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 26(28) (2014) 4783, https://doi.org/10.1002/adma.201400428.
-
[47]
J. Qiu, H. Feng, Z. Chen, S. Ruan, Y.- Chen, T. Xu, J. Su, E. Ha, L. Wang, Rare Met. 41(6) (2022) 2074, https://doi.org/10.1007/s12598-021-01929-4.
-
[48]
W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang, H. Huang, Nano Energy 104(2022) 107906, https://doi.org/10.1016/j.nanoen.2022.107906.
-
[49]
J. Xie, C. Zhang, T.D. Waite, Water Res. 217(2022) 118425, https://doi.org/10.1016/j.watres.2022.118425.
-
[50]
W. Shi, W. Sun, Y. Liu, K. Zhang, H. Sun, X. Lin, Y. Hong, F. Guo, W. Shi, W. Sun, et al., J. Hazard. Mater. 436(2022) 129141, https://doi.org/10.1016/j.jhazmat.2022.129141.
-
[51]
J. Qiu, J. Chen, B. Xiao, X. Li, T. Wan, F. Qin, Y. Mi, Z. Huang, Catal. Lett. 150(1) (2020) 222, https://doi.org/10.1007/s10562-019-02920-6.
-
[1]
-
-
-
[1]
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-. doi: 10.1016/j.actphy.2025.100144
-
[2]
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131
-
[3]
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
-
[4]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
-
[5]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[6]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[7]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[8]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[9]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[10]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[11]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[12]
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
-
[13]
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
-
[14]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[15]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[16]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[17]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[18]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[19]
Hao Ren , Wen Zhao , Fangna Dai , Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145
-
[20]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(8)
- HTML views(1)
Login In
DownLoad: