FeOOH调节Bi12O17Cl2@FeOOH异质结中Bi12O17Cl2的表面势阱深度以增强压电电荷转移和压电自芬顿催化

邱江源 于涛 陈均鑫 李文轩 张晓萱 李金生 郭瑞 黄在银 刘宣文

引用本文: 邱江源, 于涛, 陈均鑫, 李文轩, 张晓萱, 李金生, 郭瑞, 黄在银, 刘宣文. FeOOH调节Bi12O17Cl2@FeOOH异质结中Bi12O17Cl2的表面势阱深度以增强压电电荷转移和压电自芬顿催化[J]. 物理化学学报, 2026, 42(1): 100157. doi: 10.1016/j.actphy.2025.100157 shu
Citation:  Jiangyuan Qiu,  TaoYu,  Junxin Chen,  Wenxuan Li,  Xiaoxuan Zhang,  jinsheng Li,  Rui Guo,  Zaiyin Huang,  Xuanwen Liu. Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100157. doi: 10.1016/j.actphy.2025.100157 shu

FeOOH调节Bi12O17Cl2@FeOOH异质结中Bi12O17Cl2的表面势阱深度以增强压电电荷转移和压电自芬顿催化

    通讯作者: 郭瑞,Emails:guorui@neuq.edu.cn; 黄在银,Emails:huangzaiyin@163.com; 刘宣文,Emails:lxw@neuq.edu.cn
  • 基金项目:

    国家自然科学基金(21873048, 22263001)和秦皇岛市重点研发计划(202302B013)资助项目

摘要: 尽管异质结压电催化剂的设计被证明可以显著提升其催化活性,但异质结界面在压电过程中对表面势阱的调控机制及其对载流子迁移的影响仍缺乏系统研究。本研究通过自组装策略,在Bi12O17Cl2@FeOOH体系中构建了非晶FeOOH与Bi12O17Cl2之间的增强界面相互作用异质界面结。这种强界面相互作用显著增强了界面极性,可大幅抑制Bi12O17Cl2表面电荷的应力响应能力(最大降幅达原始值的63%–98%),这显著降低了压电过程中表面势阱的深度,从而有效削弱了压电电荷的束缚,同时促进了电荷转移。同时,界面形成的Bi–O–Fe化学键构建了电荷传输通道。这些协同机制使得压电自芬顿反应中H2O2产率达到3.04 mmol g−1 h−1,总有机碳去除率提高了3倍(从18.6%增至55.8%)。

English

    1. [1]

      L. Gao, Y. Cao, L. Wang, S. Li, Front. Environ. Sci. Eng. 16(6) (2021) 77, https://doi.org/10.1007/s11783-021-1511-6.L. Gao, Y. Cao, L. Wang, S. Li, Front. Environ. Sci. Eng. 16(6) (2021) 77, https://doi.org/10.1007/s11783-021-1511-6.

    2. [2]

      F. Qin, J. Qiu, Q. Feng, K. Chen, X. Li, X. Zhang, C. Zuo, L. Feng, H. Zhu, Appl. Surf. Sci. 648(2024) 158987, https://doi.org/10.1016/j.apsusc.2023.158987.F. Qin, J. Qiu, Q. Feng, K. Chen, X. Li, X. Zhang, C. Zuo, L. Feng, H. Zhu, Appl. Surf. Sci. 648(2024) 158987, https://doi.org/10.1016/j.apsusc.2023.158987.

    3. [3]

      K. Hou, Z. Pi, F. Chen, L. He, F. Yao, S. Chen, X. Li, H. Dong, Q. Yang. J. Hazard. Mater. 435(2022) 128970, https://doi.org/10.1016/j.jhazmat.2022.128970.K. Hou, Z. Pi, F. Chen, L. He, F. Yao, S. Chen, X. Li, H. Dong, Q. Yang. J. Hazard. Mater. 435(2022) 128970, https://doi.org/10.1016/j.jhazmat.2022.128970.

    4. [4]

      Y. Wu, H. Che, B. Liu, Y. Ao, Small Struct.‌ 4(7) (2023) 2200371, https://doi.org/10.1002/sstr.202200371.Y. Wu, H. Che, B. Liu, Y. Ao, Small Struct.‌ 4(7) (2023) 2200371, https://doi.org/10.1002/sstr.202200371.

    5. [5]

      Z. Liang, Q. Yan, H. Ou, D. Li, Y. Zhang, J. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317394121, https://doi.org/10.1073/pnas.2317394121.Z. Liang, Q. Yan, H. Ou, D. Li, Y. Zhang, J. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317394121, https://doi.org/10.1073/pnas.2317394121.

    6. [6]

      N. Tian, C. Hu, J. Wang, Y. Zhang, T. Ma, H. Huang, Coord. Chem. Rev. 463(2022) 214515, https://doi.org/10.1016/j.ccr.2022.214515.N. Tian, C. Hu, J. Wang, Y. Zhang, T. Ma, H. Huang, Coord. Chem. Rev. 463(2022) 214515, https://doi.org/10.1016/j.ccr.2022.214515.

    7. [7]

      P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32(29) (2020) 2001976, https://doi.org/10.1002/adma.202001976.P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32(29) (2020) 2001976, https://doi.org/10.1002/adma.202001976.

    8. [8]

      C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang, T. Ma, H. Huang, Adv. Funct. Mater. 33(29) (2023) 2301144, https://doi.org/10.1002/adfm.202301144.C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang, T. Ma, H. Huang, Adv. Funct. Mater. 33(29) (2023) 2301144, https://doi.org/10.1002/adfm.202301144.

    9. [9]

      L. Liu, M. Ruan, C. Wang, Z. Liu, Appl. Catal. B-Environ. Energy. 354(2024) 124117, https://doi.org/10.1016/j.apcatb.2024.124117.L. Liu, M. Ruan, C. Wang, Z. Liu, Appl. Catal. B-Environ. Energy. 354(2024) 124117, https://doi.org/10.1016/j.apcatb.2024.124117.

    10. [10]

      S. Liu, B. Jing, C. Nie, Z. Ao, X. Duan, B. Lai, Y. Shao, S. Wang, T. An, Environ. Sci.-Nano 8(3) (2021) 784, https://doi.org/10.1039/D0EN01237H.S. Liu, B. Jing, C. Nie, Z. Ao, X. Duan, B. Lai, Y. Shao, S. Wang, T. An, Environ. Sci.-Nano 8(3) (2021) 784, https://doi.org/10.1039/D0EN01237H.

    11. [11]

      M. Ran, B. Du, W. Liu, Z. Liang, L. Liang, Y. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317435121, https://doi.org/10.1073/pnas.2317435121.M. Ran, B. Du, W. Liu, Z. Liang, L. Liang, Y. Zhang, L. Zeng, M. Xing, Proc. Natl. Acad. Sci. 121(9) (2024) e2317435121, https://doi.org/10.1073/pnas.2317435121.

    12. [12]

      Y. Zhang, L. Wang, H. Huang, C. Hu, X. Zhang, C. Wang, Y. Zhang, Appl. Catal. B-Environ. 331(2023) 122714, https://doi.org/10.1016/j.apcatb.2023.122714.Y. Zhang, L. Wang, H. Huang, C. Hu, X. Zhang, C. Wang, Y. Zhang, Appl. Catal. B-Environ. 331(2023) 122714, https://doi.org/10.1016/j.apcatb.2023.122714.

    13. [13]

      P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Angew. Chem. Int. Ed. 59(38) (2020) 16517. https://doi.org/10.1002/anie.202007046.P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Angew. Chem. Int. Ed. 59(38) (2020) 16517. https://doi.org/10.1002/anie.202007046.

    14. [14]

      F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan, Y. Zhu, Appl. Catal. B-Environ. 312(2022) 121438, https://doi.org/10.1016/j.apcatb.2022.121438.F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan, Y. Zhu, Appl. Catal. B-Environ. 312(2022) 121438, https://doi.org/10.1016/j.apcatb.2022.121438.

    15. [15]

      R. Guo, X. Zhang, A. Kuklin, G. Peng, L. Jin, Y. Chen, A. Hans, Y. Zhang, J. Hazard. Mater. 490(2025) 137774, https://doi.org/10.1016/j.jhazmat.2025.137774.R. Guo, X. Zhang, A. Kuklin, G. Peng, L. Jin, Y. Chen, A. Hans, Y. Zhang, J. Hazard. Mater. 490(2025) 137774, https://doi.org/10.1016/j.jhazmat.2025.137774.

    16. [16]

      X. Ning, D. Jia, S. Li, M. Khan, A. Hao, Rare Met. 42(9) (2023) 3034, https://doi.org/10.1007/s12598-023-02363-4.X. Ning, D. Jia, S. Li, M. Khan, A. Hao, Rare Met. 42(9) (2023) 3034, https://doi.org/10.1007/s12598-023-02363-4.

    17. [17]

      R. Su, J. Zhang, V. Wong, D. Zhang, Y. Yang, Z. Luo, X. Wang, H. Wen, Y. Liu, J. Seidel, et al., Adv. Mater. 35(42) (2023) 2303018, https://doi.org/10.1002/adma.202303018.R. Su, J. Zhang, V. Wong, D. Zhang, Y. Yang, Z. Luo, X. Wang, H. Wen, Y. Liu, J. Seidel, et al., Adv. Mater. 35(42) (2023) 2303018, https://doi.org/10.1002/adma.202303018.

    18. [18]

      X. Ning, A. Hao, X. Qiu, Adv. Funct. Mater. 35(2) (2025) 2413217, https://doi.org/10.1002/adfm.202413217.X. Ning, A. Hao, X. Qiu, Adv. Funct. Mater. 35(2) (2025) 2413217, https://doi.org/10.1002/adfm.202413217.

    19. [19]

      F. Huang, W. Wang, G. Li, M. Humayun, Q. Yu, Y. Wang, C. Wang, J. Wang, Rare Met. 44(6) (2025) 3981, https://doi.org/10.1007/s12598-024-03203-9.F. Huang, W. Wang, G. Li, M. Humayun, Q. Yu, Y. Wang, C. Wang, J. Wang, Rare Met. 44(6) (2025) 3981, https://doi.org/10.1007/s12598-024-03203-9.

    20. [20]

      Q. Tang, R. Sanchis-Gual, N. Qin, H. Ye, S. Sevim, A. Veciana, C. Corral-Casas, K. Thodkar, J. Wu, B. J. Nelson, et al., J. Am. Chem. Soc. 147(10) (2025) 8289, https://doi.org/10.1021/jacs.4c15681.Q. Tang, R. Sanchis-Gual, N. Qin, H. Ye, S. Sevim, A. Veciana, C. Corral-Casas, K. Thodkar, J. Wu, B. J. Nelson, et al., J. Am. Chem. Soc. 147(10) (2025) 8289, https://doi.org/10.1021/jacs.4c15681.

    21. [21]

      T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, IEEE Trans. Dielectr. Electr. Insul. 15(1) (2008) 152, https://doi.org/10.1109/T-DEI.2008.4446746.T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, IEEE Trans. Dielectr. Electr. Insul. 15(1) (2008) 152, https://doi.org/10.1109/T-DEI.2008.4446746.

    22. [22]

      H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 5(2) (2022) 486, https://doi.org/10.1002/eem2.12237.H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 5(2) (2022) 486, https://doi.org/10.1002/eem2.12237.

    23. [23]

      H. Zheng, Y. Wang, J. Liu, J. wang, K. Yan, K. Zhu, Appl. Catal. B-Environ. 341(2024) 123335, https://doi.org/10.1016/j.apcatb.2023.123335.H. Zheng, Y. Wang, J. Liu, J. wang, K. Yan, K. Zhu, Appl. Catal. B-Environ. 341(2024) 123335, https://doi.org/10.1016/j.apcatb.2023.123335.

    24. [24]

      J. Qiu, X. Lei, B. Wang, H. Zhang, J. You, R. Guo, X. Liu, Coord. Chem. Rev. 519(2024) 216115, https://doi.org/10.1016/j.ccr.2024.216115.J. Qiu, X. Lei, B. Wang, H. Zhang, J. You, R. Guo, X. Liu, Coord. Chem. Rev. 519(2024) 216115, https://doi.org/10.1016/j.ccr.2024.216115.

    25. [25]

      Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(6) (2024) e202316410, https://doi.org/10.1002/anie.202316410.Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(6) (2024) e202316410, https://doi.org/10.1002/anie.202316410.

    26. [26]

      X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Environ. Sci. Technol. 51(9) (2017) 5118, https://doi.org/10.1021/acs.est.6b05906.X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Environ. Sci. Technol. 51(9) (2017) 5118, https://doi.org/10.1021/acs.est.6b05906.

    27. [27]

      J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19(22) (2023) 2208232, https://doi.org/10.1002/smll.202208232.J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19(22) (2023) 2208232, https://doi.org/10.1002/smll.202208232.

    28. [28]

      J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7(1) (2016) 11480, https://doi.org/10.1038/ncomms11480.J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7(1) (2016) 11480, https://doi.org/10.1038/ncomms11480.

    29. [29]

      C. Zhu, Q. He, T. Sun, M. Xu, J. Wang, Q. jin, C. Chen, X. Duan, H. Xu, S. Wang, Chem. Eng. J. 464(2023) 142704, https://doi.org/10.1016/j.cej.2023.142704.C. Zhu, Q. He, T. Sun, M. Xu, J. Wang, Q. jin, C. Chen, X. Duan, H. Xu, S. Wang, Chem. Eng. J. 464(2023) 142704, https://doi.org/10.1016/j.cej.2023.142704.

    30. [30]

      Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen, Y. Liu, L. Li, T. Wei, H. Li, J. Xia, Appl. Catal. B-Environ. 323(2023) 122148, https://doi.org/10.1016/j.apcatb.2022.122148.Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen, Y. Liu, L. Li, T. Wei, H. Li, J. Xia, Appl. Catal. B-Environ. 323(2023) 122148, https://doi.org/10.1016/j.apcatb.2022.122148.

    31. [31]

      L. Yu, X. Liu, H. Zhang, B. Zhou, Z. Chen, H. Li, L. Zhang, J. Am. Chem. Soc. 146(47) (2024) 32816, https://doi.org/10.1021/jacs.4c13254.L. Yu, X. Liu, H. Zhang, B. Zhou, Z. Chen, H. Li, L. Zhang, J. Am. Chem. Soc. 146(47) (2024) 32816, https://doi.org/10.1021/jacs.4c13254.

    32. [32]

      S. Zhou, H. He, J. Li, Z. Ye, Z. Liu, J. Shi, Y. Hu, W. Cai. Adv. Funct. Mater. 34(12) (2024) 2313770, https://doi.org/10.1002/adfm.202313770.S. Zhou, H. He, J. Li, Z. Ye, Z. Liu, J. Shi, Y. Hu, W. Cai. Adv. Funct. Mater. 34(12) (2024) 2313770, https://doi.org/10.1002/adfm.202313770.

    33. [33]

      S. Guo, Z. Hu, M. Zhen, B. Gu, B. Shen, F. Dong, Appl. Catal. B-Environ. 264(2020) 118506, https://doi.org/10.1016/j.apcatb.2019.118506.S. Guo, Z. Hu, M. Zhen, B. Gu, B. Shen, F. Dong, Appl. Catal. B-Environ. 264(2020) 118506, https://doi.org/10.1016/j.apcatb.2019.118506.

    34. [34]

      S. Nayak, G. Swain, K. Parida, ACS Applied Materials & Interfaces. 11(23) (2019) 20923, https://doi.org/10.1021/acsami.9b06511.S. Nayak, G. Swain, K. Parida, ACS Applied Materials & Interfaces. 11(23) (2019) 20923, https://doi.org/10.1021/acsami.9b06511.

    35. [35]

      Y. Zhang, X. Zhai, N. Wang, J. Sun, F. Ma, K. Dou, P. Ju, J. Duan, B. Hou, J. Environ. Chem. Eng. 12(2) (2024) 112163, https://doi.org/10.1016/j.jece.2024.112163.Y. Zhang, X. Zhai, N. Wang, J. Sun, F. Ma, K. Dou, P. Ju, J. Duan, B. Hou, J. Environ. Chem. Eng. 12(2) (2024) 112163, https://doi.org/10.1016/j.jece.2024.112163.

    36. [36]

      Y. Shi, H. Li, C. Mao, G. Zhan, Z. Yang, C. Ling, K. Wei, X. Liu, Z. Ai, L. ACS ES&T Eng. 2(6) (2022) 957, https://doi.org/10.1021/acsestengg.1c00466.Y. Shi, H. Li, C. Mao, G. Zhan, Z. Yang, C. Ling, K. Wei, X. Liu, Z. Ai, L. ACS ES&T Eng. 2(6) (2022) 957, https://doi.org/10.1021/acsestengg.1c00466.

    37. [37]

      X. Lu, K. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428(2022) 131027, https://doi.org/10.1016/j.cej.2021.131027.X. Lu, K. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428(2022) 131027, https://doi.org/10.1016/j.cej.2021.131027.

    38. [38]

      Q. Chai, Z. Liu, Z. Deng, Z. Peng, X. Chao, J. Lu, H. Huang, S. Zhang, Z. Yang, Nat. Commun. 16(1) (2025) 1633, https://doi.org/10.1038/s41467-025-56767-0.Q. Chai, Z. Liu, Z. Deng, Z. Peng, X. Chao, J. Lu, H. Huang, S. Zhang, Z. Yang, Nat. Commun. 16(1) (2025) 1633, https://doi.org/10.1038/s41467-025-56767-0.

    39. [39]

      S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu, N. Mushtaq, Y. Yang, K. Khan, P.D. Lund, M. Motola, W. Xu, Energy Environ. Mater. 7(3) (2024) e12606, https://doi.org/10.1002/eem2.12606.S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu, N. Mushtaq, Y. Yang, K. Khan, P.D. Lund, M. Motola, W. Xu, Energy Environ. Mater. 7(3) (2024) e12606, https://doi.org/10.1002/eem2.12606.

    40. [40]

      J. Guo, Z. Lei, F. Wang, J. Xu, S. Xu, Chemosensors 8(3) (2020) 50, https://doi.org/10.3390/chemosensors8030050.J. Guo, Z. Lei, F. Wang, J. Xu, S. Xu, Chemosensors 8(3) (2020) 50, https://doi.org/10.3390/chemosensors8030050.

    41. [41]

      V.R. Khalilov, F.K. Chibirova, Chibirova. J. Phys. A Math. Theor. 40(24) (2007) 6469, https://doi.org/10.1088/1751-8113/40/24/013.V.R. Khalilov, F.K. Chibirova, Chibirova. J. Phys. A Math. Theor. 40(24) (2007) 6469, https://doi.org/10.1088/1751-8113/40/24/013.

    42. [42]

      R. Sun, Z. Zhu, N. Tian, Y. Zhang, H. Huang, Angew. Chem. Int. Ed. 63(41) (2024) e202408862, https://doi.org/10.1002/anie.202408862.R. Sun, Z. Zhu, N. Tian, Y. Zhang, H. Huang, Angew. Chem. Int. Ed. 63(41) (2024) e202408862, https://doi.org/10.1002/anie.202408862.

    43. [43]

      J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36(49) (2024) 2412070, https://doi.org/10.1002/adma.202412070.J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36(49) (2024) 2412070, https://doi.org/10.1002/adma.202412070.

    44. [44]

      N. Chen, S. Che, Y.-H. Zhang, H. Li, Y. Li, X. He, Rare Met. 44(7) (2025) 4740, https://doi.org/10.1007/s12598-025-03295-x.N. Chen, S. Che, Y.-H. Zhang, H. Li, Y. Li, X. He, Rare Met. 44(7) (2025) 4740, https://doi.org/10.1007/s12598-025-03295-x.

    45. [45]

      Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 5(1) (2014) 3038, https://doi.org/10.1038/ncomms4038.Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 5(1) (2014) 3038, https://doi.org/10.1038/ncomms4038.

    46. [46]

      R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 26(28) (2014) 4783, https://doi.org/10.1002/adma.201400428.R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 26(28) (2014) 4783, https://doi.org/10.1002/adma.201400428.

    47. [47]

      J. Qiu, H. Feng, Z. Chen, S. Ruan, Y.- Chen, T. Xu, J. Su, E. Ha, L. Wang, Rare Met. 41(6) (2022) 2074, https://doi.org/10.1007/s12598-021-01929-4.J. Qiu, H. Feng, Z. Chen, S. Ruan, Y.- Chen, T. Xu, J. Su, E. Ha, L. Wang, Rare Met. 41(6) (2022) 2074, https://doi.org/10.1007/s12598-021-01929-4.

    48. [48]

      W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang, H. Huang, Nano Energy 104(2022) 107906, https://doi.org/10.1016/j.nanoen.2022.107906.W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang, H. Huang, Nano Energy 104(2022) 107906, https://doi.org/10.1016/j.nanoen.2022.107906.

    49. [49]

      J. Xie, C. Zhang, T.D. Waite, Water Res. 217(2022) 118425, https://doi.org/10.1016/j.watres.2022.118425.J. Xie, C. Zhang, T.D. Waite, Water Res. 217(2022) 118425, https://doi.org/10.1016/j.watres.2022.118425.

    50. [50]

      W. Shi, W. Sun, Y. Liu, K. Zhang, H. Sun, X. Lin, Y. Hong, F. Guo, W. Shi, W. Sun, et al., J. Hazard. Mater. 436(2022) 129141, https://doi.org/10.1016/j.jhazmat.2022.129141.W. Shi, W. Sun, Y. Liu, K. Zhang, H. Sun, X. Lin, Y. Hong, F. Guo, W. Shi, W. Sun, et al., J. Hazard. Mater. 436(2022) 129141, https://doi.org/10.1016/j.jhazmat.2022.129141.

    51. [51]

      J. Qiu, J. Chen, B. Xiao, X. Li, T. Wan, F. Qin, Y. Mi, Z. Huang, Catal. Lett. 150(1) (2020) 222, https://doi.org/10.1007/s10562-019-02920-6.J. Qiu, J. Chen, B. Xiao, X. Li, T. Wan, F. Qin, Y. Mi, Z. Huang, Catal. Lett. 150(1) (2020) 222, https://doi.org/10.1007/s10562-019-02920-6.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  20
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-08-13
  • 收稿日期:  2025-05-24
  • 修回日期:  2025-08-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章