Citation: Chunyuan Kang,  Xiaoyu Li,  Fan Yang,  Bai Yang. Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100156. doi: 10.1016/j.actphy.2025.100156 shu

Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence

  • Corresponding author: Bai Yang, byangchem@jlu.edu.cn
  • Received Date: 11 June 2025
    Revised Date: 29 July 2025

  • Carbonized polymer dots (CPDs) have emerged as promising room temperature phosphorescent (RTP) materials owing to their tunable luminescence and facile synthesis. However, current strategies relying on hydrogen/covalent bond for luminescence enhancement suffer from limited phosphorescence intensity, and color diversity (primarily green). This work proposes constructing ionic-bond crosslinked network as a novel design strategy to address these limitations. Owing to the high strength, non-directionality and non-saturation of ionic bond, crosslinked networks are constructed to immobilize chromophores and suppress non-radiative transitions. By incorporating lithium ions into poly(acrylic acid)-based CPDs, the photoluminescence quantum yield is dramatically enhanced from 1.1% to 48.4%, with a 40-fold increase in phosphorescence intensity. Further introduction of zinc ions enables tunable RTP emission from green to yellow via transition metal doping. This strategy achieves effective regulation of RTP intensity and wavelength in CPDs, providing a versatile platform for designing advanced organic phosphorescent materials with tailored RTP properties.
  • 加载中
    1. [1]

      M. Fang, J. Yang, Z. Li, Prog. Mater. Sci. 125(2022) 100914, https://doi.org/10.1016/j.pmatsci.2021.100914.

    2. [2]

      J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, et al., Nat. Commun. 9(2018) 840, https://doi.org/10.1038/s41467-018-03236-6.

    3. [3]

      N. Gan, H. Shi, Z. An, W. Huang, Adv. Funct. Mater. 28(51) (2018) 1802657, https://doi.org/10.1002/adfm.201802657.

    4. [4]

      Z.Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 58(18) (2019) 6028, https://doi.org/10.1002/anie.201901882.

    5. [5]

      H. Wu, Y. Zhou, L. Yin, C. Hang, X. Li, H. Ågren, T. Yi, Q. Zhang, L. Zhu, J. Am. Chem. Soc. 139(2) (2017) 785, https://doi.org/10.1021/jacs.6b10550.

    6. [6]

      L. Bian, H. Shi, X. Wang, K. Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, et al., J. Am. Chem. Soc. 140(34) (2018) 10734, https://doi.org/10.1021/jacs.8b03867.

    7. [7]

      J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S.H.P. Sung, G. Shan, J.W.Y. Lam, Z. Shuai, et al., Nat. Commun. 9(2018) 2963, https://doi.org/10.1038/s41467-018-05298-y.

    8. [8]

      S. Cai, H. Shi, D. Tian, H. Ma, Z. Cheng, Q. Wu, M. Gu, L. Huang, Z. An, Q. Peng, et al., Adv. Funct. Mater. 28(9) (2018) 1705045, https://doi.org/10.1002/adfm.201705045.

    9. [9]

      H. Ma, A. Lv, L. Fu, S. Wang, Z. An, H. Shi, W. Huang, Ann. Phys. 531(7) (2019) 1800482, https://doi.org/10.1002/andp.201800482.

    10. [10]

      Y. Sun, X. Zhang, J. Zhuang, H. Zhang, C. Hu, M. Zheng, B. Lei, Y. Liu, Carbon 165(2020) 306, https://doi.org/10.1016/j.carbon.2020.04.030.

    11. [11]

      X. Wei, J. Yang, L. Hu, Y. Cao, J. Lai, F. Cao, J. Gu, X. Cao, J. Mater. Chem. C 9(13) (2021) 4425, https://doi.org/10.1039/d0tc06031c.

    12. [12]

      K. Jiang, Y. Wang, Z. Li, H. Lin, Mater. Chem. Front. 4(2) (2020) 386, https://doi.org/10.1039/c9qm00578a.

    13. [13]

      J. Jia, W. Lu, Y. Gao, L. Li, C. Dong, S. Shuang, Talanta 231(2021) 122350, https://doi.org/10.1016/j.talanta.2021.122350.

    14. [14]

      K. Jiang, S. Hu, Y. Wang, Z. Li, H. Lin, Small 16(31) (2020) 2001909, https://doi.org/10.1002/smll.202001909.

    15. [15]

      Q. Fu, S. Sun, K. Lu, N. Li, Z. Dong, Chin. Chem. Lett. 35(7) (2024) 109136, https://doi.org/10.1016/j.cclet.2023.109136.

    16. [16]

      S. Zong, X. Yu, Y. Yang, X. Yang, J. Li, Chin. Chem. Lett. 36(6) (2025) 110343, https://doi.org/10.1016/j.cclet.2024.110343.

    17. [17]

      S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Angew. Chem. Int. Ed. 54(49) (2015) 14626, https://doi.org/10.1002/anie.201504951.

    18. [18]

      S. Tao, S. Zhu, T. Feng, C. Zheng, B. Yang, Angew. Chem. Int. Ed. 59(25) (2020) 9826, https://doi.org/10.1002/anie.201916591.

    19. [19]

      S. Zhu, L. Wang, N. Zhou, X. Zhao, Y. Song, S. Maharjan, J. Zhang, L. Lu, H. Wang, B. Yang, Chem. Commun. 50(89) (2014) 13845, https://doi.org/10.1039/c4cc05806b.

    20. [20]

      Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, J. Shi, Nat. Commun. 9(2018) 734, https://doi.org/10.1038/s41467-018-03144-9.

    21. [21]

      P. Long, Y. Feng, C. Cao, Y. Li, J. Han, S. Li, C. Peng, Z. Li, W. Feng, Adv. Funct. Mater. 28(37) (2018) 1800791, https://doi.org/10.1002/adfm.201800791.

    22. [22]

      S. Cai, H. Ma, H. Shi, H. Wang, X. Wang, L. Xiao, W. Ye, K. Huang, X. Cao, N. Gan, et al., Nat. Commun. 10(2019) 4247, https://doi.org/10.1038/s41467-019-11749-x.

    23. [23]

      F. Nie, B. Zhou, K.-Z. Wang, D. Yan, Chem. Eng. J. 430(2022) 133084, https://doi.org/10.1016/j.cej.2021.133084.

    24. [24]

      Y. Xu, X. Gao, H. Yu, Y. Ding, Q. Li, C. Sheng, M. Guo, Mater. Today Chem. 41(2024) 133084, https://doi.org/10.1016/j.mtchem.2024.102340.

    25. [25]

      X.-Y. Liu, H. Xu, L.-Q. Zhang, M. Zhong, X.-M. Xie, ACS Appl. Mater. Interfaces 11(45) (2019) 42856, https://doi.org/10.1021/acsami.9b18620.

    26. [26]

      C. Kang, S. Tao, F. Yang, C. Zheng, Z. Qu, B. Yang, Angew. Chem. Int. Ed. 63(1) (2024), https://doi.org/10.1002/anie.202316527.

    27. [27]

      C. Kang, S. Tao, F. Yang, C. Zheng, X. Li, B. Yang, Chem. Eng. J. 31(8) (2025) e202403928, https://doi.org/10.1002/chem.202403928.

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    4. [4]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    5. [5]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    8. [8]

      Shiyi Chen Jialong Fu Jianping Qiu Guoju Chang Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-. doi: 10.1016/j.actphy.2025.100135

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    12. [12]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    13. [13]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    14. [14]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    15. [15]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    16. [16]

      Congqi ZhuBo LiuRuchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146

    17. [17]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return