增强型双功能S型CoWO4/CdIn2S4异质结用于H2生成和甲醛降解

陈成鑫 石洪飞 蔡晓燕 毛梁 陈哲

引用本文: 陈成鑫, 石洪飞, 蔡晓燕, 毛梁, 陈哲. 增强型双功能S型CoWO4/CdIn2S4异质结用于H2生成和甲醛降解[J]. 物理化学学报, 2025, 41(12): 100155. doi: 10.1016/j.actphy.2025.100155 shu
Citation:  Chengxin Chen, Hongfei Shi, Xiaoyan Cai, Liang Mao, Zhe Chen. Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction[J]. Acta Physico-Chimica Sinica, 2025, 41(12): 100155. doi: 10.1016/j.actphy.2025.100155 shu

增强型双功能S型CoWO4/CdIn2S4异质结用于H2生成和甲醛降解

    通讯作者: 石洪飞, shihf813@nenu.edu.cn; 毛梁, maoliang@cumt.edu.cn; 陈哲, chenz@jlict.edu.cn
  • 基金项目:

    国家自然科学基金 22309061

    国家自然科学基金 22209203

    国家自然科学基金 22309204

    国家自然科学基金 22278172

    吉林省教育厅项目 JJKH20240305KJ

    吉林省科学技术厅项目 YDZJ202401372ZYTS

摘要: 设计与构建兼具高效光生载流子分离能力和强氧化/还原能力的双功能S型异质结光催化剂,在能源转换与环境净化的光催化应用中具有重要实践价值。本研究通过静电纺丝与水热法系统设计合成了一系列新型x% CoWO4/CdIn2S4复合材料(x%代表CWO与CIS的质量比;x = 10, 20, 30, 40, 50)。通过可见光下甲醛降解与产氢实验评估其光催化性能。最优的30% CWO/CIS异质结展现出865.14 μmol g−1 h−1的卓越产氢性能(420 nm处表观量子效率AQE = 3.6%),并在1 h内实现69%的甲醛去除率。基于原位红外光谱技术解析了甲醛降解路径。优异的催化性能主要归因于可见光吸收增强、活性位点数量增加及S型异质结的构建。通过原位XPS、电子自旋共振测试、自由基捕获实验及密度泛函理论(DFT)计算,证实了CWO/CIS体系的S型电荷转移机制。该研究为系统性开发兼具气体污染物去除与产氢功能的双功能S型异质结提供了重要见解。

English

    1. [1]

      Z. Wu, X. Meng, Z. Zhao, Nano Energy 132 (2024) 110364, https://doi.org/10.1016/j.nanoen.2024.110364. doi: 10.1016/j.nanoen.2024.110364

    2. [2]

      Y. Li, Y. Ma, Y. Jiang, M. Sun, S. Zhou, W. Jiang, B. Liu, C. Liu, G. Che, Sep. Purif. Technol. 354 (2025) 128993, https://doi.org/10.1016/j.seppur.2024.128993. doi: 10.1016/j.seppur.2024.128993

    3. [3]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009. doi: 10.1016/j.jmst.2023.05.009

    5. [5]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    6. [6]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3 doi: 10.1038/s41570-025-00698-3

    7. [7]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013. doi: 10.1016/j.jmst.2025.02.013

    8. [8]

      H. Ding, R. Shen, K. Huang, C. Liang, P. Zhang, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065. doi: 10.1002/adfm.202400065

    9. [9]

      A. Rong, Q. Zhao, H. Shi, X. Cai, H. Zhu, C. Chen, X. Zhou, G. Yan, L. Mao, Sep. Purif. Technol. 356 (2025) 130010, https://doi.org/10.1016/j.seppur.2024.130010. doi: 10.1016/j.seppur.2024.130010

    10. [10]

      X. Zhou, H. Shi, A. Rong, M. Wei, C. Chen, Z. Chen, Appl. Surf. Sci. 694 (2025) 162844, https://doi.org/10.1016/j.apsusc.2025.162844. doi: 10.1016/j.apsusc.2025.162844

    11. [11]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    12. [12]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034. doi: 10.1016/j.jmst.2024.01.034

    13. [13]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    14. [14]

      H. Shi, E. Zhang, H. Zhu, H. Wang, A. Rong, L. Mao, Int. J. Hydrogen Energy. 51 (2024) 1287, https://doi.org/10.1016/j.ijhydene.2023.09.183. doi: 10.1016/j.ijhydene.2023.09.183

    15. [15]

      A. Bhirud, N. Chaudhari, L. Nikam, R. Sonawane, K. Patil, B. Kale, Int. J. Hydrogen Energy. 36 (2011) 11628, https://doi.org/10.1016/j.ijhydene.2011.06.061. doi: 10.1016/j.ijhydene.2011.06.061

    16. [16]

      Q. Wang, L. Wang, Y. Jiang, Y. Liu, W. Zhang, J. Zhang, A. L. O. Macauley, Environ. Res. 209 (2022) 112800, https://doi.org/10.1016/j.envres.2022.112800. doi: 10.1016/j.envres.2022.112800

    17. [17]

      X. Ma, S. Hou, D. Li, Y. Wu, S. Li, Sep. Purif. Technol. 354 (2025) 129057, https://doi.org/10.1016/j.seppur.2024.129057. doi: 10.1016/j.seppur.2024.129057

    18. [18]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047. doi: 10.1016/j.jmst.2024.12.047

    19. [19]

      Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B Environ. 371 (2025) 125275, https://doi.org/10.1016/j.apcatb.2025.125275. doi: 10.1016/j.apcatb.2025.125275

    20. [20]

      L. Li, K. Kuang, X. Zheng, J. Wang, W. Ren, J. Ge, S. Zhang, S. Chen, J. Colloid Interface Sci. 663 (2024) 981, https://doi.org/10.1016/j.jcis.2024.02.218. doi: 10.1016/j.jcis.2024.02.218

    21. [21]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9. doi: 10.1016/s1872-2067(24)60099-9

    22. [22]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    23. [23]

      X. Zhou, S. Zhang, W. Liu, T. Liu, Adv. Compos. Hybrid Mater. 8 (2025) 102, https://doi.org/10.1007/s42114-024-01134-8. doi: 10.1007/s42114-024-01134-8

    24. [24]

      D. Peng, Z. Zhao, A. Rong, J. Sun, X. Li, H. Shi, Z. Su, ACS Appl. Nano Mater. 8 (2025) 7419, https://doi.org/10.1021/acsanm.5c01092. doi: 10.1021/acsanm.5c01092

    25. [25]

      C. Chen, H. Shi, A. Rong, M. Wei, X. Zhou, B. Feng, W. Wang, Int. J. Hydrogen. Energy. 130 (2025) 249, https://doi.org/10.1016/j.ijhydene.2025.04.330. doi: 10.1016/j.ijhydene.2025.04.330

    26. [26]

      F. Rong, Y. Xue, W. Tang, Q. Lu, M. Wei, E. Guo, Y. Pang, J. Taiwan Inst. Chem. E. 133 (2022) 104267, https://doi.org/10.1016/j.jtice.2022.104267. doi: 10.1016/j.jtice.2022.104267

    27. [27]

      G. Yang, H. Zhang, M. Dou, H. Yang, X. Yin, D. Li, H. Zhao, J. Dou, J. Colloid Interface Sci. 610 (2022) 1057, https://doi.org/10.1016/j.jcis.2021.11.159. doi: 10.1016/j.jcis.2021.11.159

    28. [28]

      Z. Zeng, L. Mao, R. Zhang, Y. Liu, Y. Ling, X. Cai, J. Zhang, Chem. Eng. J. 496 (2024) 153769, https://doi.org/10.1016/j.cej.2024.153769. doi: 10.1016/j.cej.2024.153769

    29. [29]

      W. Chen, T. Huang, Y. Hua, T. Liu, X. Liu, S. Chen, J. Hazard. Mater. 320 (2016) 529, https://doi.org/10.1016/j.jhazmat.2016.08.025. doi: 10.1016/j.jhazmat.2016.08.025

    30. [30]

      P. Bagwade, V. Magdum, D. Malavekar, Y. Chitare, J. Gunjakar, J. Mater. Sci-Mater. El. 33 (2022) 24646, https://doi.org/10.1007/s10854-022-09174-w. doi: 10.1007/s10854-022-09174-w

    31. [31]

      H. Zhu, H. Shi, J. Li, X. Qu, S. Zhao, H. Wang, A. Rong, Z. Chen, J. Alloys Compd. 976 (2024) 173072, https://doi.org/10.1016/j.jallcom.2023.173072. doi: 10.1016/j.jallcom.2023.173072

    32. [32]

      J. Yan, L. Wei, Acta Phys. Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    33. [33]

      J. Wang, J. Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, M. Shao, Y. Liu, Z. Kang, Nano Res. 17 (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4. doi: 10.1007/s12274-024-6623-4

    34. [34]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1. doi: 10.1016/s1872-2067(23)64496-1

    35. [35]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6. doi: 10.1016/S1872-2067(24)60253-6

    36. [36]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459. doi: 10.1016/j.apcatb.2024.124459

    37. [37]

      S. Li, C. You, F. Yang, G. Liang, C. Zhuang, X. Li, Chin. J. Catal. 68 (2025) 259–271, https://doi.org/10.1016/s1872-2067(24)60181-6. doi: 10.1016/s1872-2067(24)60181-6

    38. [38]

      Y. Deng, S. Wang, T. Zhou, B. Liu, L. Wang, C. Liu, W. Jiang, G. Che, Chem. Eng. J. 497 (2024) 154580, https://doi.org/10.1016/j.cej.2024.154580. doi: 10.1016/j.cej.2024.154580

    39. [39]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012. doi: 10.1016/j.mattod.2024.11.012

    40. [40]

      Z. Yan, X. Zhang, B. Yu, J. Yu, D. Han, Y. Jin, C. Wu, G. Dai, X. Xiong, Ceram. Int. 50 (2024) 3052, https://doi.org/10.1016/j.ceramint.2023.11.053. doi: 10.1016/j.ceramint.2023.11.053

    41. [41]

      A. Rong, H. Shi, Q. Zhao, H. Zhu, H. Wang, G. Yan, Sep. Purif. Technol. 348 (2024) 127782, https://doi.org/10.1016/j.seppur.2024.127782. doi: 10.1016/j.seppur.2024.127782

    42. [42]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    43. [43]

      U. Sahoo, S. Pattnayak, S. Choudhury, P. Aparajita, DK. Pradhan, G. Hota, Appl. Catal. B–Environ. 343 (2024) 123524, https://doi.org/10.1016/j.apcatb.2023.123524. doi: 10.1016/j.apcatb.2023.123524

    44. [44]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x. doi: 10.1038/s41467-025-56306-x

    45. [45]

      J. Wang, X. Xu, Y. Shen, J. Environ. Chem. Eng. 10 (2022) 107436, https://doi.org/10.1016/j.jece.2022.107436. doi: 10.1016/j.jece.2022.107436

    46. [46]

      Y. Yang, T. Ji, Y. Lin, W. Su, J. Clean. Prod. 295 (2021) 126458, https://doi.org/10.1016/j.jclepro.2021.126458. doi: 10.1016/j.jclepro.2021.126458

    47. [47]

      S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, Appl. Catal. B–Environ. 280 (2021) 119386, https://doi.org/10.1016/j.apcatb.2020.119386. doi: 10.1016/j.apcatb.2020.119386

    48. [48]

      Y. Li, W. Li, F. Liu, M. Li, X. Qi, M. Xue, Y. Wang, F. Han, J. Nanopart. Res. 22 (2020) 122, https://doi.org/10.1007/s11051-020-04860-4. doi: 10.1007/s11051-020-04860-4

    49. [49]

      W. Yu, Z. Shu, M. Zhao, W. Ma, Sep. Purif. Technol. 327 (2023) 124966, https://doi.org/10.1016/j.seppur.2023.124966. doi: 10.1016/j.seppur.2023.124966

    50. [50]

      J. Ye, M. Wu, B. Zhu, B. Cheng, J. Yu, J. Hazard. Mater. 474 (2024) 134672, https://doi.org/10.1016/j.jhazmat.2024.134672. doi: 10.1016/j.jhazmat.2024.134672

    51. [51]

      Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, J. Phys. Chem. C. 114 (2010) 6237, https://doi.org/10.1021/jp910514f. doi: 10.1021/jp910514f

    52. [52]

      J. Guo, C. Lin, C. Jiang, P. Zhang, Appl. Surf. Sci. 475 (2019) 237, https://doi.org/10.1016/j.apsusc.2018.12.238. doi: 10.1016/j.apsusc.2018.12.238

    53. [53]

      X. Li, Y. Huang, W. Ho, S. Han, P. Wang, S. Lee, Z. Zhang, Appl. Catal. B-Environ. 338 (2023) 123048, https://doi.org/10.1016/j.apcatb.2023.123048. doi: 10.1016/j.apcatb.2023.123048

    54. [54]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6. doi: 10.1016/S1872-2067(24)60102-6

    55. [55]

      Y. Li, D. Han, Z. Wang, F. Gou, ACS Appl. Mater. Interfaces. 16 (2024) 7080, https://doi.org/10.1021/acsami.3c15898. doi: 10.1021/acsami.3c15898

    56. [56]

      D. Peng, L. Mao, J. Sun, X. Li, H. Shi, Z. Su, Int. J. Hydrogen Energy. 114 (2025) 60–70, https://doi.org/10.1016/j.ijhydene.2025.03.029. doi: 10.1016/j.ijhydene.2025.03.029

    57. [57]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040. doi: 10.1016/j.jmst.2025.02.040

    58. [58]

      H. Moon, S. Kim, S. Joo, M. Kim, N. Park, Nano Today. 49 (2023) 101785, https://doi.org/10.1016/j.nantod.2023.101785. doi: 10.1016/j.nantod.2023.101785

    59. [59]

      X. Wang, K. Sun, S. Gu, Y. Zhang, D. Wu, X. Zhou, K. Gao, Y. Ding, Appl. Surf. Sci. 549 (2021) 149341, https://doi.org/10.1016/j.apsusc.2021.149341. doi: 10.1016/j.apsusc.2021.149341

    60. [60]

      D. Peng, Y. Wang, H. Shi, W. Jiang, T. Jin, Z. Jin, Z. Chen, J. Colloid Interface Sci. 613 (2022) 194, https://doi.org/10.1016/j.jcis.2021.10.179. doi: 10.1016/j.jcis.2021.10.179

    61. [61]

      C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, S. Li, Appl. Surf. Sci. 679 (2025) 161303, https://doi.org/10.1016/j.apsusc.2024.161303. doi: 10.1016/j.apsusc.2024.161303

    62. [62]

      H. Shi, T. Zhao, J. Wang, Y. Wang, Z. Chen, B. Liu, H. Ji, W. Wang, G. Zhang, Y. Li, J. Alloys Compd. 860 (2021) 157924, https://doi.org/10.1016/j.jallcom.2020.157924. doi: 10.1016/j.jallcom.2020.157924

    63. [63]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951. doi: 10.1038/s41467-024-53951

    64. [64]

      J. Sun, Y. Zhang, S. Fan, X. Li, Q. Zhao, Appl. Catal. B-Environ. 356 (2024) 124248, https://doi.org/10.1016/j.apcatb.2024.124248. doi: 10.1016/j.apcatb.2024.124248

    65. [65]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456. doi: 10.1002/anie.202505456

    66. [66]

      Z. Wu, L. Hou, W. Li, Q. Chen, C. Jin, Y. Chen, Q. Wei, H. Yang, Y. Jiang, D. Tang, J. Colloid Interface Sci. 610 (2022) 136, https://doi.org/10.1016/j.jcis.2021.12.036. doi: 10.1016/j.jcis.2021.12.036

    67. [67]

      Z. Chen, Y. Gao, F. Chen, H. Shi, Chem. Eng. J. 413 (2021) 127474, https://doi.org/10.1016/j.cej.2020.127474. doi: 10.1016/j.cej.2020.127474

    68. [68]

      T. Zhao, D. Peng, W. Hu, H. Shi, A. Rong, X. Li, G. Yan, Z. Su, J. Mol. Struct. 1335 (2025) 141934, https://doi.org/10.1016/j.molstruc.2025.141934. doi: 10.1016/j.molstruc.2025.141934

    69. [69]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036

    70. [70]

      R. Li, H. Li, X. Zhang, B. Liu, B. Wu, B. Zhu, J. Yu, G. Liu, L. Zheng, Q. Zeng, Adv. Funct. Mater. 34 (2024) 2402797, https://doi.org/10.1002/adfm.202402797. doi: 10.1002/adfm.202402797

    71. [71]

      H. Hu, X. Zhang, K. Zhang, Y. Ma, H. Wang, H. Li, H. Huang, X. Sun, T. Ma, Adv. Energy Mater. 14 (2024) 2303638, https://doi.org/10.1002/aenm.202303638. doi: 10.1002/aenm.202303638

    72. [72]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2. doi: 10.1016/S1872-2067(24)60011-2

    73. [73]

      X. Jiang, Z. Chen, Y. Shu, A. Idris, S. Li, B. Peng, J. Wang, Z. Li, Appl. Catal. B-Environ. 348 (2024) 123840, https://doi.org/10.1016/j.apcatb.2024.123840. doi: 10.1016/j.apcatb.2024.123840

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  23
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-12-15
  • 收稿日期:  2025-07-11
  • 接受日期:  2025-08-09
  • 修回日期:  2025-08-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章