Citation: Chengyan Ge,  Jiawei Hu,  Xingyu Liu,  Yuxi Song,  Chao Liu,  Zhigang Zou. Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100154. doi: 10.1016/j.actphy.2025.100154 shu

Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism

  • Corresponding author: Chao Liu, cliu@ycit.edu.cn
  • Received Date: 29 June 2025
    Revised Date: 4 August 2025

  • Hydrogen (H2) production technology utilizing solar energy is an essential strategy for questing carbon-neutral, but designing the optimal heterostructured photocatalysts is one of the great challenges. To date, the self-integration of highly-dispersed black NiO clusters with ZIS microspheres was successfully achieved during the solvothermal process. These constructed NiO/ZIS S-scheme heterostructured composites could provide more active for photocatalytic H2 evolution (PHE) under visible light. The optimal 2-NiO/ZIS showed the best PHE rate of 2474.0 μmol g−1 h−1, highest apparent quantum yield (AQY) value of 36.67% and excellent structural stability. Furthermore, NiO/ZIS composites also exhibited the high PHE rates in natural seawater. The charge separation behaviors of the catalyst were systematically evaluated using advanced spectroscopic characterization techniques, specifically in situ XPS, time-resolved photoluminescence (TRPL) tested in water and transient absorption spectroscopy (TAS). The experimental analysis and theoretical calculation results elucidated the S-scheme charge transfer mechanism for NiO/ZIS. The promoted PHE activity was ascribed to the combined effect between black NiO clusters and ZIS, which enhanced light harvesting ability, accelerated charge carrier transportation and separation, remained high redox ability, and improved surface reaction kinetics. This study offers the insights into constructing S-scheme heterostructured composites with photothermal effect.
  • 加载中
    1. [1]

      P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 613(2023) 66, https://doi.org/10.1038/s41586-022-05399-1.

    2. [2]

      J. Tian, J. Li, Y. Guo, Z. Liu, B. Liu, J. Li, Adv. Powder Mater. 3(2024) 100201, https://doi.org/10.1016/j.apmate.2024.100201.

    3. [3]

      H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 598(2021) 304, https://doi.org/10.1038/s41586-021-03907-3.

    4. [4]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 347(2015) 970, https://doi.org/10.1126/science.aaa3145.

    5. [5]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50(2023) 273, https://doi.org/10.1016/S1872‐2067(23)64462‐6.

    6. [6]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139(2023) 167, https://doi.org/10.1016/j.jmst.2022.08.030.

    7. [7]

      Q. Luan, X. Xue, H. Feng, L. Tao, D. Zhou, T. Chen, M. Tan, W. Dong, Appl. Catal. B Environ. 337(2023) 122932, https://doi.org/10.1016/j.apcatb.2023.122932.

    8. [8]

      X. Jia, Y. Lu, K. Du, H. Zheng, L. Mao, H. Li, Z. Ma, R. Wang, J. Zhang, Adv. Funct. Mater. 33(2023) 2304072, https://doi.org/10.1002/adfm.202304072.

    9. [9]

      X. Xin, Y. Li, Y. Zhang, Y. Wang, X. Chi, Y. Wei, C. Diao, J. Su, R. Wang, P. Guo, J. Yu, J. Zhang, A.J. Sobrido, M.M. Titirici, X. Li, Nat. Commun. 15(2024) 337, https://doi.org/10.1038/s41467-024-44725-1.

    10. [10]

      G. Sun, Z. Tai, F. Li, Q. Ye, T. Wang, Z. Fang, L. Jia, W. Liu, H. Wang, Small 19(2023) 2207758, https://doi.org/10.1002/smll.202207758.

    11. [11]

      Z. Yu, X. Luan, H. Xiao, Y. Yang, D. Luo, J. Zi, Z. Lian, Appl. Catal. B Environ. 347(2024) 123702, https://doi.org/10.1016/j.apcatb.2024.123702.

    12. [12]

      Y. Yin, Y. Xu, H. Zhang, H. Zheng, Z. Xu, C. Xu, G. Zuo, S. Yang, H. He, Y. Liu, J. Colloid Interface Sci. 666(2024) 648, https://doi.org/10.1016/j.jcis.2024.03.194.

    13. [13]

      L. Yang, J. Guo, S. Chen, A. Li, J. Tang, N. Guo, J. Yang, Z. Zhang, J. Zhou, J. Colloid Interface Sci. 659(2024) 776, https://doi.org/10.1016/j.jcis.2024.01.022.

    14. [14]

      Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang, Y. Wang, Y. Wang, H. Li, Z. Yu, Z. Sun, X. Jian, X. Gao, J. Ren, C. Fan, R. Li, Small 19(2023) 2300717, https://doi.org/10.1002/smll.202300717.

    15. [15]

      P. Su, D. Zhang, X. Yao, T. Liang, N. Yang, D. Zhang, X. Pu, J. Liu, P. Cai, Z. Li, J. Colloid Interface Sci. 662(2024) 276, https://doi.org/10.1016/j.jcis.2024.02.058.

    16. [16]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. Garcia, J. Yu, Chem. Soc. Rev. 54(2025) 4874, https://doi.org/10.1039/d4cs01091d.

    17. [17]

      J. Yan, L. Wei., Acta Phys. Chim. Sin. 40(2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.

    18. [18]

      R. Kavitha, C. Manjunatha, J. Yu, S.G. Kumar, EnergyChem 7(2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159.

    19. [19]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2310600, https://doi.org/10.1002/adma.202310600.

    20. [20]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69(2025) 315, https://doi.org/10.1016/s1872-2067(24)60210-x.

    21. [21]

      H. Du, R. Huo, A. Liu, Y. Hui, B. Shen, N. Li, Y. Ji, Q. Jin, B. Zheng, G. Yang, Z. Zhang, Q. Wang, Appl. Catal. B Environ. 357(2024) 124283, https://doi.org/10.1016/j.apcatb.2024.124283.

    22. [22]

      R. Niu, Q. Liu, B. Huang, Z. Liu, W. Zhang, Z. Peng, Z. Wang, Y. Yang, Z. Gu, J. Li, Appl. Catal. B Environ. 317(2022) 121727, https://doi.org/10.1016/j.apcatb.2022.121727.

    23. [23]

      X. Li, W. Zhang, F. Yang, S. Yao, L. Li, X. An, B. Xi, S. Xiong, C. An, Adv. Energy Mater. 14(2024) 2401877, https://doi.org/10.1002/aenm.202401877.

    24. [24]

      F.-F. Tao, Y. Dong, L. Yang, ACS Sustainable Chem. Eng. 12(2024) 6709, https://doi.org/10.1021/acssuschemeng.4c00579.

    25. [25]

      M.H. Aziz, M. Latif, M. Asif, F. Shaheen, H.M. Fahad, J. Yang, R. Wahab, M. Alam, Q. Huang, J. Energy Storage 98(2024) 113000, https://doi.org/10.1016/j.est.2024.113000.

    26. [26]

      Y. Li, W. Si, Y. Pan, R. Chen, H. Tan, Y. Wang, J. Liang, F. Hou, Appl. Surf. Sci. 662(2024) 160111, https://doi.org/10.1016/j.apsusc.2024.160111.

    27. [27]

      C. Suppaso, C. Khamdang, S. Suthirakun, K. Maeda, N. Khaorapapong, Int. J. Hydrogen Energy 97(2025) 994, https://doi.org/10.1016/j.ijhydene.2024.11.390.

    28. [28]

      Y. Wu, J. Liu, J. Rong, Y. Zhang, Q. Liang, M. Zhou, Z. Li, S. Xu, Int. J. Hydrogen Energy 48(2023) 12723, https://doi.org/10.1016/j.ijhydene.2022.12.239.

    29. [29]

      J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Appl. Catal. B Environ 224(2018) 705, https://doi.org/10.1016/j.apcatb.2017.11.028.

    30. [30]

      J. Hu, J. Li, Z. Pu, W. Xiao, H. Yu, Z. Zhang, F. Yu, C. Liu, Q. Zhang, J. Colloid Interface Sci. 665(2024) 780, https://doi.org/10.1016/j.jcis.2024.03.178.

    31. [31]

      Z. Lei, X. Cao, J. Fan, X. Hu, J. Hu, N. Li, T. Sun, E. Liu, Chem. Eng. J. 457(2023) 141249, https://doi.org/10.1016/j.cej.2022.141249.

    32. [32]

      C. Liu, W. Xiao, X. Liu, Q. Wang, J. Hu, S. Zhang, J. Xu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 161(2023) 123, https://doi.org/10.1016/j.jmst.2023.04.007.

    33. [33]

      J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta Phys. Chim. Sin. 40(2024) 2305043, https://doi.org/10.3866/p ku.Whxb202305043.

    34. [34]

      Y. Wang, L. Gao, J. Huo, Y. Li, W. Kang, C. Zou, L. Jia, Chem. Eng. J. 460(2023) 141667, https://doi.org/10.1016/j.cej.2023.141667.

    35. [35]

      W.-N. Yang, J. Yang, H. Yang, L. Sun, H.-X. Li, D.-C. Li, J.-M. Dou, X.-G. Li, G.-D. Cao, Rare Met. 44(2025) 2474, https://doi.org/10.1007/s12598-024-03060-6.

    36. [36]

      Y.-X. Shao, Y.-Z. Li, X.-Q. Lian, X.-T. Che, Q.-Y. Li, Y.-F. Feng, H.-Z. Wang, J.-Y. Liao, Q.-B. Liu, H. Li, Rare Met. 44(2025) 389, https://doi.org/10.1007/s12598-024-02949-6.

    37. [37]

      W. Dong, S.-A. Zhou, Y. Ma, D.-J. Chi, R. Chen, H.-M. Long, T.-J. Chun, S.-J. Liu, F.-P. Qian, K. Zhang, Rare Met. 42(2023) 1195, https://doi.org/10.1007/s12598-022-02196-7.

    38. [38]

      W. Li, J.-J. Li, Z.-F. Liu, H.-Y. Ma, P.-F. Fang, R. Xiong, J.-H. Wei, Rare Met. 43(2024) 533, https://doi.org/10.1007/s12598-023-02419-5.

    39. [39]

      H. Yang, H. Hou, M. Yang, Z. Zhu, H. Fu, D. Zhang, Y. Luo, W. Yang, Chem. Eng. J. 474(2023) 145813, https://doi.org/10.1016/j.cej.2023.145813.

    40. [40]

      F. Tao, Y. Dong, L. Yang, Appl. Surf. Sci. 638(2023) 158044, https://doi.org/10.1016/j.apsusc.2023.158044.

    41. [41]

      S. Hu, Z. Han, G. Yan, X. Hou, S. Yi, Z. Zhang, Y. Zhou, L. Zhang, Appl. Surf. Sci. 639(2023) 158206, https://doi.org/10.1016/j.apsusc.2023.158206.

    42. [42]

      N. Chen, J. Cao, M. Guo, C. Liu, H. Lin, S. Chen, Int. J. Hydrogen Energy 46(2021) 19363, https://doi.org/10.1016/j.ijhydene.2021.03.091.

    43. [43]

      L. Pei, Y. Yu, Z. Ma, X. Wang, Q. Mao, J. Zhong, lnorg. Chem. 64(2025) 9084, https://doi.org/10.1021/acs.inorgchem.5c00555.

    44. [44]

      S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guo, W. Zhao, Z. Wang, X. Chen, Chem. Eng. J. 429(2022) 132519, https://doi.org/10.1016/j.cej.2021.132519.

    45. [45]

      J. Hu, J. Li, X. Liu, W. Xiao, H. Yu, H. Abdelsalam, C. Liu, Z. Zou, Q. Zhang, J. Colloid Interface Sci. 680(2025) 506, https://doi.org/10.1016/j.jcis.2024.11.014.

    46. [46]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40(2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

    47. [47]

      C. Wang, H. Liu, G. Wang, H. Fang, X. Yuan, C. Lu, Chem. Eng. J. 450(2022) 138167, https://doi.org/10.1016/j.cej.2022.138167.

    48. [48]

      D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, Chem. Eng. J. 482(2024) 149165, https://doi.org/10.1016/j.cej.2024.149165.

    49. [49]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193(2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.

    50. [50]

      Y. Lu, X. Jia, Z. Ma, Y. Li, S. Yue, X. Liu, J. Zhang, Adv. Funct. Mater. 32(2022) 2203638, https://doi.org/10.1002/adfm.202203638.

    51. [51]

      L. Zhang, J. Zhang, J. Yu, H. Garcia, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.

    52. [52]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41(2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.

    53. [53]

      X. Yan, W. Chen, W. Xiao, G. Yu, H. Hou, C. Liu, Surf. Interfaces 46(2024) 104183, https://doi.org/10.1016/j.surfin.2024.104183.

    54. [54]

      C. Liu, H. Yu, W. Xiao, C. Gu, J. Yu, J. Li, J. Song, Y. Song, T. Sun, Z. Zou, Q. Zhang, Appl. Surf. Sci. 682(2025) 161717, https://doi.org/10.1016/j.apsusc.2024.161717.

    55. [55]

      B. Huang, X. Fu, K. Wang, L. Wang, H. Zhang, Z. Liu, B. Liu, J. Li, Adv. Powder Mater. 3(2024) 100140, https://doi.org/10.1016/j.apmate.2023.100140.

    56. [56]

      B. Li, M. Chen, Q. Hu, J. Zhu, X. Yang, Z. Li, C. Hu, Y. Li, P. Ni, Y. Ding, Appl. Catal. B Environ. 346(2024) 123733, https://doi.org/10.1016/j.apcatb.2024.123733.

    57. [57]

      B. Xia, B. He, J. Zhang, L. Li, Y. Zhang, J. Yu, J. Ran, S.Z. Qiao, Adv. Energy Mater. 12(2022) 2201449, https://doi.org/10.1002/aenm.202201449.

    58. [58]

      L. Jing, X. Qin, Y. Luan, Y. Qu, M. Xie, Appl. Surf. Sci. 258(2012) 3340, https://doi.org/10.1016/j.apsusc.2011.07.101.

    59. [59]

      H. Liao, K. Huang, W. Hou, H. Guo, C. Lian, J. Zhang, Z. Liu, L. Wang, Adv. Powder Mater. 3(2024) 100243, https://doi.org/10.1016/j.apmate.2024.100243.

    60. [60]

      W. Xiao, H. Yu, C. Xu, Z. Pu, X. Cheng, F. Yu, C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 180(2024) 193, https://doi.org/10.1016/j.jmst.2023.08.021.

    61. [61]

      C. Liu, Y. Zhang, J. Wu, H. Dai, C. Ma, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 114(2022) 81, https://doi.org/10.1016/j.jmst.2021.12.003.

    62. [62]

      C. Liu, H. Yu, J. Li, X. Yu, Z. Yu, Y. Song, F. Zhang, Q. Zhang, Z. Zou, Acta Phys. Chim. Sin. 41(2025) 100075, https://doi.org/10.1016/j.actphy.2025.100075.

    63. [63]

      D. Zhang, C. Zhang, k. Chai, Y. Li, Z. Lv, Sep. Purif. Technol. 337(2024) 126408, https://doi.org/10.1016/j.seppur.2024.126408.

    64. [64]

      Z.-P. Lv, D.-H. Zhang, M.-L. Zang, S.-L. Li, J.-L. He, J.-X. Song, Rare Met. 43(2024) 5848, https://doi.org/10.1007/s12598-024-02859-7.

    65. [65]

      C. Du, B. Yan, G. Yang, Chem. Eng. J. 404(2021) 126477, https://doi.org/10.1016/j.cej.2020.126477.

    66. [66]

      S. Wang, D. Zhang, X. Pu, L. Zhang, D. Zhang, J. Jiang, Small (2024) 2311504, https://doi.org/10.1002/smll.202311504.

    67. [67]

      K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J. 454(2023) 140053, https://doi.org/10.1016/j.cej.2022.140053.

    68. [68]

      H. Liu, F. Sun, X. Li, Q. Ma, G. Liu, H. Yu, W. Yu, X. Dong, Z. Su, Compos. Part B Eng. 259(2023) 110746, https://doi.org/10.1016/j.compositesb.2023.110746.

    69. [69]

      X. Liu, Y. Su, Y. Li, Q. Ma, J. Luo, Small 21(2025) 2410721, https://doi.org/10.1002/smll.202410721.

    70. [70]

      X. Ding, X. Xu, J. Wang, Y. Xue, J. Wang, Y. Qin, J. Tian, J. Colloid Interface Sci. 662(2024) 727, https://doi.org/10.1016/j.jcis.2024.02.124.

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    3. [3]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    9. [9]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    12. [12]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    13. [13]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    14. [14]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    15. [15]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    16. [16]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    18. [18]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return