Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications
- Corresponding author: Pardeep Singh, pardeepchem@gmail.com Pankaj Raizada, pankajchem1@gmail.com
Citation:
Rohit Kumar, Anita Sudhaik, Aftab Asalam Pawaz Khan, Van Huy Neguyen, Archana Singh, Pardeep Singh, Sourbh Thakur, Pankaj Raizada. Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications[J]. Acta Physico-Chimica Sinica,
;2025, 41(11): 100150.
doi:
10.1016/j.actphy.2025.100150
X. Chen, J. Zhao, G. Li, D. Zhang, H. Li, Energy Mater. 2 (2022) 200001, http://dx.doi.org/10.20517/energymater.2021.24.
doi: 10.20517/energymater.2021.24
H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, Chin. J. Catal. 43 (2022) 178, https://doi.org/10.1016/S1872-2067(21)63910-4.
doi: 10.1016/S1872-2067(21)63910-4
J. Li, M. Du, Z. Wu, X. Zhang, W. Xue, H. Huang, C. Zhong, Angew. Chem., Int. Ed. 63 (2024) e202407975, https://doi.org/10.1002/anie.202407975.
doi: 10.1002/anie.202407975
T. F. Qahtan, T. O. Owolabi, O. E. Olubi, A. Hazam, Coord. Chem. Rev. 514 (2024) 215839, https://doi.org/10.1016/j.ccr.2024.215839.
doi: 10.1016/j.ccr.2024.215839
B. Das, B. Das, N. S. Das, S. Pal, B. K. Das, S. Sarkar, K. K. Chattopadhyay, Appl. Surf. Sci. 515 (2020) 145958, https://doi.org/10.1016/j.apsusc.2020.145958.
doi: 10.1016/j.apsusc.2020.145958
M. Li, K. Liang, X. Wei, Y. Zhang, H. Chen, Y. Yang, J. Liu, Y. Tian, Z. Li, L. Duan, Int. J. Hydrogen Energy 81 (2024) 447, https://doi.org/10.1016/j.ijhydene.2024.07.080.
doi: 10.1016/j.ijhydene.2024.07.080
J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al‐Ghamdi, J. Yu, Small Methods 1 (2017) 1700080, https://doi.org/10.1002/smtd.201700080.
doi: 10.1002/smtd.201700080
H. He, Z. Wang, J. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191, https://doi.org/10.1039/D5EE01295C.
doi: 10.1039/D5EE01295C
W. Lu, T. Ding, N. Lu, J. Zhang, K. Yun, P. Zhang, Z. Zhang, Appl. Surf. Sci. 592 (2022) 153348, https://doi.org/10.1016/j.apsusc.2022.153348.
doi: 10.1016/j.apsusc.2022.153348
X. Wu, R. Zhong, X. Lv, Z. Hu, D. Xia, C. Li, B. Song, S. Liu, Appl. Catal. B Environ. 330 (2023) 122666, https://doi.org/10.1016/j.apcatb.2023.122666.
doi: 10.1016/j.apcatb.2023.122666
H. Jiang, M. Xu, X. Zhao, H. Wang, Q. Liu, Z. Liu, Q. Liu, G. Yang, P. Huo, Inorg. Chem. 61 (2022) 11207, https://doi.org/10.1021/acs.inorgchem.2c01216.
doi: 10.1021/acs.inorgchem.2c01216
H. Jiang, J. Xu, L. Sun, J. Li, L. Wang, W. Wang, Q. Liu, J. Yang, Inorg. Chem. 63 (2024) 14746, https://doi.org/10.1021/acs.inorgchem.4c02428.
doi: 10.1021/acs.inorgchem.4c02428
D. Zu, H. Wei, Z. Lin, X. Bai, M. N. A. S. Ivan, Y. H. Tsang, H. Huang, Adv. Funct. Mater. 34 (2024) 2408213, https://doi.org/10.1002/adfm.202408213.
doi: 10.1002/adfm.202408213
S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.
doi: 10.1016/j.apmate.2024.100183
C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.
doi: 10.3866/PKU.WHXB202307045
R. Kumar, A. Sudhaik, A. A. P. Khan, P. Raizada, A. M. Asiri, S. Mohapatra, S. Thakur, V. K. Thakur, P. Singh, J. Ind. Eng. Chem. 106 (2022) 340, https://doi.org/10.1016/j.jiec.2021.11.008.
doi: 10.1016/j.jiec.2021.11.008
M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1.
doi: 10.1016/S1872-2067(23)64496-1
S. Li, K. Dong, M. Cai, X. Li, X. Chen, EScience 4 (2024) 100208, https://doi.org/10.1016/j.esci.2023.100208.
doi: 10.1016/j.esci.2023.100208
J. Li, P. Tu, Q. Yang, Y. Cui, C. Gao, H. Zhou, J. Lu, H. Bian, Sci. Rep. 14 (2024) 10643, https://doi.org/10.1038/s41598-024-60250-z.
doi: 10.1038/s41598-024-60250-z
X. Li, H. Sun, Y. Xie, Y. Liang, X. Gong, P. Qin, L. Jiang, J. Guo, C. Liu, Z. Wu, Coord. Chem. Rev. 467 (2022) 214596, https://doi.org/10.1016/j.ccr.2022.214596.
doi: 10.1016/j.ccr.2022.214596
Y. Li, J. Wang, Mater. Adv. 5 (2024) 749, https://doi.org/10.1039/D3MA00915G.
doi: 10.1039/D3MA00915G
V.-H. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Van Le, E. T. Helmy, Mater. Lett. 313 (2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781.
doi: 10.1016/j.matlet.2022.131781
R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145, https://doi.org/10.1016/j.jmst.2020.03.027.
doi: 10.1016/j.jmst.2020.03.027
C. Wang, Y. Zhao, C. Cheng, Q. Li, C. Guo, Y. Hu, Coord. Chem. Rev. 521 (2024) 216177, https://doi.org/10.1016/j.ccr.2024.216177.
doi: 10.1016/j.ccr.2024.216177
X. Kong, K. Wang, Z. Jin, Sol. RRL 8 (2024) 2400222, https://doi.org/10.1002/solr.202400222.
doi: 10.1002/solr.202400222
Z. Dong, Z. Zhang, T. Wang, D. Zeng, Z. Cheng, Y. Wang, X. Cao, Y. Wang, Y. Liu, X. Fan, Sep. Purif. Technol. 286 (2022) 120418, https://doi.org/10.1016/j.seppur.2021.120418.
doi: 10.1016/j.seppur.2021.120418
W. A. Mohamed, A. Alhodaib, H. A. Mousa, H. T. Handal, H. R. Galal, H. H. Abd El-Gawad, B. A. Elsayed, A. A. Labib, M. S. Abdel-Mottaleb, Nanotechnol. Rev. 14 (2025) 20250159, https://doi.org/10.1515/ntrev-2025-0159.
doi: 10.1515/ntrev-2025-0159
C. Chang, H. Lu, Y. Liu, G. Long, X. Guo, X. Ji, Z. Jin, J. Mater. Chem. A 12 (2024) 4204, https://doi.org/10.1039/D3TA06906K.
doi: 10.1039/D3TA06906K
Z. Jin, T. Li, L. Zhang, X. Wang, G. Wang, X. Hao, J. Mater. Chem. A 10 (2022) 1976, https://doi.org/10.1039/D1TA09347A.
doi: 10.1039/D1TA09347A
F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488 (2019) 151, https://doi.org/10.1016/j.apsusc.2019.05.257.
doi: 10.1016/j.apsusc.2019.05.257
J. Wang, Q. Zhang, F. Deng, X. Luo, D. D. Dionysiou, Chem. Eng. J. 379 (2020) 122264, https://doi.org/10.1016/j.cej.2019.122264.
doi: 10.1016/j.cej.2019.122264
X. Zou, C. Yuan, Y. Cui, Y. Dong, D. Chen, H. Ge, J. Ke, Sep. Purif. Technol. 266 (2021) 118545, https://doi.org/10.1016/j.seppur.2021.118545.
doi: 10.1016/j.seppur.2021.118545
Y. Yuan, R.-t. Guo, L.-F. Hong, Z.-D. Lin, X.-Y. Ji, W.-G. Pan, Chemosphere 287 (2022) 132241, https://doi.org/10.1016/j.chemosphere.2021.132241.
doi: 10.1016/j.chemosphere.2021.132241
H. Wang, Q. Liu, M. Xu, C. Yan, X. Song, X. Liu, H. Wang, W. Zhou, P. Huo, Appl. Surf. Sci. 640 (2023) 158420, https://doi.org/10.1016/j.apsusc.2023.158420.
doi: 10.1016/j.apsusc.2023.158420
F. Yi, Y. Liu, Y. Chen, J. Zhu, Q. He, C. Yang, D. Ma, J. Liu, Chin. Chem. Lett. 36 (2025) 110544, https://doi.org/10.1016/j.cclet.2024.110544.
doi: 10.1016/j.cclet.2024.110544
J. Ye, Y. Wan, Y. Li, S. Xu, X. Li, Q. Chen, X. Li, Appl. Surf. Sci. 684 (2025) 161862, https://doi.org/10.1016/j.apsusc.2024.161862.
doi: 10.1016/j.apsusc.2024.161862
C. You, X. Zhang, Y. Zhao, R. Yan, Y. Shen, Q. Xue, W. Li, T. Liu, J. Jiang, X. Chen, J. Mater. Sci. Technol. 242 (2026) 64, https://doi.org/10.1016/j.jmst.2025.05.002.
doi: 10.1016/j.jmst.2025.05.002
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.
doi: 10.1016/j.chempr.2020.06.010
C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011.
doi: 10.1016/j.jmst.2023.06.011
Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y.
doi: 10.1007/s40843-023-2725-y
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.
doi: 10.1039/D4CS01091D
C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys.-Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.
doi: 10.3866/PKU.WHXB202407014
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.
doi: 10.1016/j.apcatb.2018.11.011
S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1.
doi: 10.1016/S1872-2067(23)64479-1
J. Li, S. Yan, J. Wu, Q. Cheng, K. Wang, Acta Phys. Chim. Sin. 41 (2025) 100104, https://doi.org/10.1016/j.actphy.2025.100104.
doi: 10.1016/j.actphy.2025.100104
H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426.
doi: 10.1002/adfm.202315426
M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci. Technol. 122 (2022) 231, https://doi.org/10.1016/j.jmst.2022.02.014.
doi: 10.1016/j.jmst.2022.02.014
B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li, H. Fu, Adv. Mater. 30 (2018) 1804282, https://doi.org/10.1002/adma.201804282.
doi: 10.1002/adma.201804282
Z. Li, D. Yang, W. Zhou, Handbook of Green and Sustainable Nanotechnology. Springer, Cham (2023) 2181,
S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009.
doi: 10.1016/j.jmst.2023.05.009
S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.
doi: 10.3866/PKU.WHXB202403005
C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China. Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8.
doi: 10.1007/s40843-023-2764-8
X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Ba, H. Zhang, L. Zhang, Adv. Mater. 35 (2023) 2209141, https://doi.org/10.1002/adma.202209141.
doi: 10.1002/adma.202209141
Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu, Y. Wang, Small 20 (2024) 2306692, https://doi.org/10.1002/smll.202306692.
doi: 10.1002/smll.202306692
H. Han, M. R. Khan, I. Ahmad, A. Al-Qattan, I. Ali, M. R. Karim, H. Bayahia, F. S. Khan, Z. Ahmad, S. Ullah, J. Water Process. Eng. 61 (2024) 105346, https://doi.org/10.1016/j.jwpe.2024.105346.
doi: 10.1016/j.jwpe.2024.105346
D. A. Sabit, S. E. Ebrahim, Mater. Sci. Semicond. Proc. 163 (2023) 107559, https://doi.org/10.1016/j.mssp.2023.107559.
doi: 10.1016/j.mssp.2023.107559
A. Wang, W. Wang, J. Ni, D. Liu, D. Liu, J. Ma, X. Jia, Appl. Catal. B: Environ. 328 (2023) 122492, https://doi.org/10.1016/j.apcatb.2023.122492.
doi: 10.1016/j.apcatb.2023.122492
J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067.
doi: 10.1016/j.jmst.2023.03.067
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.
doi: 10.1016/j.jmst.2024.12.094
Q. Wang, G. Wang, J. Wang, J. Li, K. Wang, S. Zhou, Y. Su, Adv. Sustain. Syst. 7 (2023) 2200027, https://doi.org/10.1002/adsu.202200027.
doi: 10.1002/adsu.202200027
J. Ding, C. Li, H. Yin, Y. Zhou, S. Wang, K. Liu, M. a. Li, J. Wang, Environ. Pollut. 327 (2023) 121550, https://doi.org/10.1016/j.envpol.2023.121550.
doi: 10.1016/j.envpol.2023.121550
Y. Wang, H. Wang, X. Li, L. Gao, Y. Li, J. Huo, W. Kang, C. Zou, L. Jia, Appl. Surf. Sci. 616 (2023) 156501, https://doi.org/10.1016/j.apsusc.2023.156501.
doi: 10.1016/j.apsusc.2023.156501
Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029.
doi: 10.1016/j.jmst.2023.07.029
Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin, 37 (2021) 2009097, http://dx.doi.org/10.3866/PKU.WHXB202009097.
doi: 10.3866/PKU.WHXB202009097
S. Yuan, X. Liang, Y. Zheng, Y. Chu, X. Ren, Z. Zeng, G. Nan, Y. Wu, Y. He, J. Colloid Interface Sci. 670 (2024) 373, https://doi.org/10.1016/j.jcis.2024.05.120.
doi: 10.1016/j.jcis.2024.05.120
X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, Nano Energy 81 (2021) 105671, https://doi.org/10.1016/j.nanoen.2020.105671.
doi: 10.1016/j.nanoen.2020.105671
Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, https://doi.org/10.1016/j.seppur.2024.127253.
doi: 10.1016/j.seppur.2024.127253
D. Dastan, Appl. Phys. A 123 (2017) 1, https://doi.org/10.1007/s00339-017-1309-3.
doi: 10.1007/s00339-017-1309-3
Y. Fu, Y. Xu, Y. Mao, M. Tan, Q. He, H. Mao, H. Du, D. Hao, Q. Wang, Sep. Purif. Technol. 317 (2023) 123922, https://doi.org/10.1016/j.seppur.2023.123922.
doi: 10.1016/j.seppur.2023.123922
S. Wang, X. Du, C. Yao, Y. Cai, H. Ma, B. Jiang, J. Ma, Nano Res. 16 (2023) 2152, https://doi.org/10.1007/s12274-022-4960-8.
doi: 10.1007/s12274-022-4960-8
S. A. Ali, S. Majumdar, P. K. Chowdhury, S. M. Alshehri, T. Ahmad, ACS Appl. Energy Mater. 7 (2024) 7325, https://doi.org/10.1021/acsaem.4c01477.
doi: 10.1021/acsaem.4c01477
Y. Zhang, C. Liang, K. Zhang, Y. Zeng, Y. Zhou, X. Zhang, L. Yin, J. Crittenden, J. Niu, Sep. Purif. Technol. 348 (2024) 127686, https://doi.org/10.1016/j.seppur.2024.127686.
doi: 10.1016/j.seppur.2024.127686
Z. Jin, T. Wang, E. Cui, X. Yang, Chem. Eng. J. 477 (2023) 147210, https://doi.org/10.1016/j.cej.2023.147210.
doi: 10.1016/j.cej.2023.147210
H. Huang, H.-L. Wang, W.-F. Jiang, Chemosphere, 318 (2023) 137812, https://doi.org/10.1016/j.chemosphere.2023.137812.
doi: 10.1016/j.chemosphere.2023.137812
C.-H. Lu, C.-H. Yeh, Ceram. Int. 26 (2000) 351, https://doi.org/10.1016/S0272-8842(99)00063-2.
doi: 10.1016/S0272-8842(99)00063-2
H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J. P. Giesy, J. Hazard. Mater. 369 (2019) 494, https://doi.org/10.1016/j.jhazmat.2019.02.046.
doi: 10.1016/j.jhazmat.2019.02.046
J. Qin, M. Zhao, Y. Zhang, J. Shen, X. Wang, Sep. Purif. Technol. 353 (2025) 128622, https://doi.org/10.1016/j.seppur.2024.128622.
doi: 10.1016/j.seppur.2024.128622
K. Dou, C. Peng, R. Wang, H. Cao, C. Yao, J. Qiu, J. Liu, N. Tsidaeva, W. Wang, Chem. Eng. J. 455 (2023) 140813, https://doi.org/10.1016/j.cej.2022.140813.
doi: 10.1016/j.cej.2022.140813
Y. Y. Gurkan, E. Kasapbasi, Z. Cinar, Chem. Eng. J. 214 (2013) 34, https://doi.org/10.1016/j.cej.2012.10.025.
doi: 10.1016/j.cej.2012.10.025
Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234 (2018) 37, https://doi.org/10.1016/j.apcatb.2018.04.026.
doi: 10.1016/j.apcatb.2018.04.026
Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584.
doi: 10.1016/j.cej.2022.136584
J. Liu, J. Wan, L. Liu, W. Yang, J. Low, X. Gao, F. Fu, Chem. Eng. J. 430 (2022) 133125, https://doi.org/10.1016/j.cej.2021.133125.
doi: 10.1016/j.cej.2021.133125
C.-C. Tang, Y.-F. Fang, X.-Q. Cao, H.-L. Tian, Y.-P. Huang, Res. Chem. Intermed. 46 (2020) 509, https://doi.org/10.1007/s11164-019-03963-5.
doi: 10.1007/s11164-019-03963-5
C. Du, S. He, Y. Xing, Q. Zhao, C. Yu, X. Su, J. Feng, J. Sun, S. Dong, Mater. Today Phys. 27 (2022) 100827, https://doi.org/10.1016/j.mtphys.2022.100827.
doi: 10.1016/j.mtphys.2022.100827
Y. Wang, X. Zhang, Y. Liu, Y. Zhao, C. Xie, Y. Song, P. Yang, Int. J. Hydrogen Energy 44 (2019) 30151, https://doi.org/10.1016/j.ijhydene.2019.09.181.
doi: 10.1016/j.ijhydene.2019.09.181
R. Tsuruta, Y. Mizuno, T. Hosokai, T. Koganezawa, H. Ishii, Y. Nakayama, J. Cryst. Growth 468 (2017) 770, https://doi.org/10.1016/j.jcrysgro.2016.10.031.
doi: 10.1016/j.jcrysgro.2016.10.031
J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/D4EE01808G.
doi: 10.1039/D4EE01808G
X. Li, J. Zhang, Z. Wang, J. Fu, S. Li, K. Dai, M. Liu, Chem. Eur. J. 29 (2023) e202202669, https://doi.org/10.1002/chem.202202669.
doi: 10.1002/chem.202202669
F. Zhang, Y. Li, B. Ding, G. Shao, N. Li, P. Zhang, Small 19 (2023) 2303867, https://doi.org/10.1002/smll.202303867.
doi: 10.1002/smll.202303867
Y. Shao, X. Hao, W. Deng, Z. Jin, Mater. Today Chem. 38 (2024) 102075, https://doi.org/10.1016/j.mtchem.2024.102075.
doi: 10.1016/j.mtchem.2024.102075
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447.
doi: 10.1002/smll.202103447
T. Wang, Z. Jin, J. Mater. Sci. Technol. 155 (2023) 132, https://doi.org/10.1016/j.jmst.2023.03.002.
doi: 10.1016/j.jmst.2023.03.002
F. A. Qaraah, S. A. Mahyoub, A. Hezam, A. Qaraah, F. Xin, G. Xiu, Appl. Catal. B Environ. 315 (2022) 121585, https://doi.org/10.1016/j.apcatb.2022.121585.
doi: 10.1016/j.apcatb.2022.121585
M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.
doi: 10.1016/j.jmst.2025.01.036
M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001.
doi: 10.1016/j.jmst.2024.12.001
R. Chen, L. Li, Y. Gong, H. Lou, Y. Pang, D. Yang, X. Qiu, J. Mater. Sci. Technol. 202 (2024) 67, https://doi.org/10.1016/j.jmst.2024.02.080.
doi: 10.1016/j.jmst.2024.02.080
L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391 (2017) 202, https://doi.org/10.1016/j.apsusc.2016.07.055.
doi: 10.1016/j.apsusc.2016.07.055
Y. Wang, R. Shi, J. Lin, Y. Zhu, Energy Environ. Sci. 4 (2011) 2922, https://doi.org/10.1039/C0EE00825G.
doi: 10.1039/C0EE00825G
R. Banyal, P. Raizada, T. Ahamad, S. Kaya, M. M. Maslov, V. Chaudhary, C. M. Hussain, P. Singh, J. Phys. Chem. Solids 195 (2024) 112132, https://doi.org/10.1016/j.jpcs.2024.112132.
doi: 10.1016/j.jpcs.2024.112132
C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 430 (2022) 132806, https://doi.org/10.1016/j.cej.2021.132806.
doi: 10.1016/j.cej.2021.132806
K. Liu, J. Zhang, J. Ma, R. Sun, Green Chem. 26 (2024) 2893, https://doi.org/10.1039/D3GC03990K.
doi: 10.1039/D3GC03990K
F. Zhao, I. Ahmad, H. Bayahia, S. AlFaify, K. M. Alanezi, M. Q. Alfaifi, M. D. Ali, Y. Y. Ghadi, I. Ali, T. L. Tamang, Int. J. Hydrog. Energy 80 (2024) 659, https://doi.org/10.1016/j.ijhydene.2024.07.156.
doi: 10.1016/j.ijhydene.2024.07.156
L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009.
doi: 10.1016/j.matt.2022.09.009
X. Yue, L. Cheng, J. Fan, Q. Xiang, Appl. Catal. B: Environ. 304 (2022) 120979, https://doi.org/10.1016/j.apcatb.2021.120979.
doi: 10.1016/j.apcatb.2021.120979
W. Zhou, H. Fu, Inorg. Chem. Front. 5 (2018) 1240, https://doi.org/10.1039/C8QI00122G.
doi: 10.1039/C8QI00122G
D. Shi, J. Jiang, D. Wang, M. Huo, S. Dong, J. Environ. Chem. Eng. 12 (2024) 112982, https://doi.org/10.1016/j.jece.2024.112982.
doi: 10.1016/j.jece.2024.112982
N. Fang, Y. Ding, C. Liu, Z. Chen, Appl. Surf. Sci. 452 (2018) 49, https://doi.org/10.1016/j.apsusc.2018.04.273.
doi: 10.1016/j.apsusc.2018.04.273
H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B: Environ. 144 (2014) 75, https://doi.org/10.1016/j.apcatb.2013.06.023.
doi: 10.1016/j.apcatb.2013.06.023
T. Liu, L. Bai, N. Tian, J. Liu, Y. Zhang, H. Huang, Int. J. Hydrog. Energy 48 (2023) 12257, https://doi.org/10.1016/j.ijhydene.2022.12.121.
doi: 10.1016/j.ijhydene.2022.12.121
K. A. Stewart, B.-S. Yeh, J. F. Wager, J. Non-Cryst. Solids. 432 (2016) 196, https://doi.org/10.1016/j.jnoncrysol.2015.10.005.
doi: 10.1016/j.jnoncrysol.2015.10.005
L. Xie, T. Du, J. Wang, Y. Ma, Y. Ni, Z. Liu, L. Zhang, C. Yang, J. Wang, Chem. Eng. J. 426 (2021) 130617, https://doi.org/10.1016/j.cej.2021.130617.
doi: 10.1016/j.cej.2021.130617
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.
doi: 10.1016/j.apcatb.2020.119006
S. Zhang, Y. Si, B. Li, L. Yang, W. Dai, S. Luo, Small 17 (2021) 2004980, https://doi.org/10.1002/smll.202004980.
doi: 10.1002/smll.202004980
Y. Chen, Y. Cheng, J. Zhao, W. Zhang, J. Gao, H. Miao, X. Hu, J. Colloid Interface Sci. 627 (2022) 1047, https://doi.org/10.1016/j.jcis.2022.07.117.
doi: 10.1016/j.jcis.2022.07.117
M. Yang, Y. Wu, Y. Zhang, X. Li, Z. Jin, J. Environ. Chem. Eng. 11 (2023) 110795, https://doi.org/10.1016/j.jece.2023.110795.
doi: 10.1016/j.jece.2023.110795
M. A. Nazir, T. Najam, M. Altaf, K. Ahmad, I. Hossain, M. A. Assiri, M. S. Javed, A. ur Rehman, S. S. A. Shah, J. Alloys Compd. 990 (2024) 174378, https://doi.org/10.1016/j.jallcom.2024.174378.
doi: 10.1016/j.jallcom.2024.174378
B. Han, Y. H. Hu, Energy Sci. Eng. 4 (2016) 285, https://doi.org/10.1002/ese3.128.
doi: 10.1002/ese3.128
C. Zuo, Q. Su, X. Yan, Processes 11 (2023) 867, https://doi.org/10.3390/pr11030867.
doi: 10.3390/pr11030867
K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.
doi: 10.3866/PKU.WHXB202310013
Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys. Chim. Sin. 39 (2023) 2211051, https://doi.org/10.3866/PKU.WHXB202211051.
doi: 10.3866/PKU.WHXB202211051
V. Dutta, A. Sudhaik, P. Raizada, A. Singh, T. Ahamad, S. Thakur, Q. Van Le, V.-H. Nguyen, P. Singh, J. Mater. Sci. Technol. 162 (2023) 11, https://doi.org/10.1016/j.jmst.2023.03.037.
doi: 10.1016/j.jmst.2023.03.037
H. Peng, Z. Xing, W. Kong, C. Wu, B. Fang, Y. Cui, Z. Li, H. Liu, W. Zhou, Fuel 346 (2023) 128368, https://doi.org/10.1016/j.fuel.2023.128368.
doi: 10.1016/j.fuel.2023.128368
A. Kumar, Y. Singla, M. Sharma, A. Bhardwaj, V. Krishnan, Chemosphere 308 (2022) 136212, https://doi.org/10.1016/j.chemosphere.2022.136212.
doi: 10.1016/j.chemosphere.2022.136212
H. Lv, C. Zhou, Q. Shen, Y. Kong, B. Wan, Z. Suo, G. Wang, G. Wang, Y. Liu, J. Colloid Interface Sci. 677 (2025) 365, https://doi.org/10.1016/j.jcis.2024.08.072.
doi: 10.1016/j.jcis.2024.08.072
Z. Xu, W. Shi, Y. Shi, H. Sun, L. Li, F. Guo, H. Wen, Appl. Surf. Sci. 595 (2022) 153482, https://doi.org/10.1016/j.apsusc.2022.153482.
doi: 10.1016/j.apsusc.2022.153482
H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G. Q. Xu, Y. Zhang, Catal. Sci. Technol. 9 (2019) 4898, https://doi.org/10.1039/C9CY01086F.
doi: 10.1039/C9CY01086F
Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Chem. Eng. J. 427 (2022) 131830, https://doi.org/10.1016/j.cej.2021.131830.
doi: 10.1016/j.cej.2021.131830
R. Liang, Z. He, Y. Lu, G. Yan, L. Wu, Sep. Purif. Technol. 277 (2021) 119442, https://doi.org/10.1016/j.seppur.2021.119442.
doi: 10.1016/j.seppur.2021.119442
Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024) 215674, https://doi.org/10.1016/j.ccr.2024.215674.
doi: 10.1016/j.ccr.2024.215674
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.
doi: 10.1016/j.actphy.2025.100065
J. Qin, Y. An, Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002
doi: 10.3866/PKU.WHXB202408002
Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021.
doi: 10.3866/PKU.WHXB202407021
J. Lei, Z. Wang, J. Huo, S. Sang, C. Zhang, E. Zhu, T. Kong, F. Karadas, J. Low, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202422667, https://doi.org/10.1002/anie.202422667.
doi: 10.1002/anie.202422667
D.-d. Hu, R.-t. Guo, C.-f. Li, J.-s. Yan, W.-g. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473.
doi: 10.1016/j.seppur.2024.128473
H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081.
doi: 10.1016/j.jmst.2023.11.081
A. H. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020.
doi: 10.3866/PKU.WHXB202406020
Q. Zhang, Z. Wang, Y. Song, J. Fan, T. Sun, E. Liu, J. Mater. Sci. Technol. 169 (2024) 148, https://doi.org/10.1016/j.jmst.2023.05.066.
doi: 10.1016/j.jmst.2023.05.066
M. Li, J.-Z. Wang, Z.-L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.
doi: 10.1007/s12598-023-02539-y
N. M. Gupta, Renew. Sust. Energy Rev. 71 (2017) 585, https://doi.org/10.1016/j.rser.2016.12.086.
doi: 10.1016/j.rser.2016.12.086
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6.
doi: 10.1016/S1872-2067(19)63382-6
J. Xiao, Y. Xie, H. Cao, Chemosphere 121 (2015) 1, https://doi.org/10.1016/j.chemosphere.2014.10.072.
doi: 10.1016/j.chemosphere.2014.10.072
M. Zhang, T. Wang, C. Bian, N. Yang, H. Qi, Sep. Purif. Techol. 306 (2023) 122736, https://doi.org/10.1016/j.seppur.2022.122736.
doi: 10.1016/j.seppur.2022.122736
J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.
doi: 10.1016/j.actphy.2025.100050
W. Kong, Z. Xing, H. Zhang, B. Fang, Y. Cui, Z. Li, P. Chen, W. Zhou, J. Mater. Chem. C 10 (2022) 18164, https://doi.org/10.1039/D2TC03943E.
doi: 10.1039/D2TC03943E
Y. Kumar, K. Sharma, A. Sudhaik, P. Raizada, S. Thakur, V.-H. Nguyen, Q. Van Le, T. Ahamad, S. M. Alshehri, P. Singh, Appl. Nanosci. 13 (2023) 4129, https://doi.org/10.1007/s13204-022-02743-9.
doi: 10.1007/s13204-022-02743-9
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Wenzheng Chen , Weiyun Chen , Bin Chen , Mingbao Feng . Deciphering the electron-shuttling role of iron(Ⅲ) porphyrin in modulating the reductive UV/S(Ⅳ) system into the oxidative strategy for micropollutant abatement. Chinese Chemical Letters, 2025, 36(10): 110743-. doi: 10.1016/j.cclet.2024.110743
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040