设计串联S型光催化体系:机理见解、表征技术与应用

KumarRohit SudhaikAnita Pawaz KhanAftab Asalam NeguyenVan Huy SinghArchana SinghPardeep ThakurSourbh RaizadaPankaj

引用本文: KumarRohit, SudhaikAnita, Pawaz KhanAftab Asalam, NeguyenVan Huy, SinghArchana, SinghPardeep, ThakurSourbh, RaizadaPankaj. 设计串联S型光催化体系:机理见解、表征技术与应用[J]. 物理化学学报, 2025, 41(11): 100150. doi: 10.1016/j.actphy.2025.100150 shu
Citation:  Rohit Kumar, Anita Sudhaik, Aftab Asalam Pawaz Khan, Van Huy Neguyen, Archana Singh, Pardeep Singh, Sourbh Thakur, Pankaj Raizada. Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100150. doi: 10.1016/j.actphy.2025.100150 shu

设计串联S型光催化体系:机理见解、表征技术与应用

    通讯作者: SinghPardeep, pardeepchem@gmail.com; RaizadaPankaj, pankajchem1@gmail.com
摘要: 串联S型异质结已成为光催化领域一项极具前景的创新技术,为环境修复提供了有效解决方案。与传统Z型或Ⅱ型光催化剂不同,S型结构选择性保留了高效参与氧化还原反应的高能光生载流子。这种独特机理能增强电荷分离、强化内建电场并提升光吸收能力。然而,单结S型体系存在量子效率低的问题。因此,构建多组分S型体系可有效提升光催化性能。串联S型体系由多个具有交错能带位置的半导体/材料组成,形成阶梯式或定向电荷转移机制。这种阶梯式电位梯度可显著提升电荷分离、光吸收、氧化还原能力、稳定性及整体光催化活性。本文深入阐述了串联S型异质结的作用原理,探讨了通过半导体配对、助催化剂添加和介质嵌入等设计策略实现电荷迁移最大化与复合最小化的方法;系统分析了多种合成路径及其动力学与热力学原理;讨论了包括密度泛函理论(DFT)模拟、原位X射线光电子能谱(XPS)、瞬态吸收光谱(TAS)、光致发光(PL)和电化学阻抗谱(EIS)在内的一系列先进表征手段,这些技术为揭示电子行为与界面动力学提供了重要见解。文章还探讨了该类异质结在二氧化碳还原、产氢和有机污染物降解等主要领域的应用。尽管潜力显著,但仍需解决合成工艺复杂、材料稳定性和规模化生产等挑战。针对现有局限,本文提出了未来研究方向。总体而言,串联S型异质结是构建高效可持续光催化技术的卓越方案。

English

    1. [1]

      X. Chen, J. Zhao, G. Li, D. Zhang, H. Li, Energy Mater. 2 (2022) 200001, http://dx.doi.org/10.20517/energymater.2021.24. doi: 10.20517/energymater.2021.24

    2. [2]

      H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, Chin. J. Catal. 43 (2022) 178, https://doi.org/10.1016/S1872-2067(21)63910-4. doi: 10.1016/S1872-2067(21)63910-4

    3. [3]

      J. Li, M. Du, Z. Wu, X. Zhang, W. Xue, H. Huang, C. Zhong, Angew. Chem., Int. Ed. 63 (2024) e202407975, https://doi.org/10.1002/anie.202407975. doi: 10.1002/anie.202407975

    4. [4]

      T. F. Qahtan, T. O. Owolabi, O. E. Olubi, A. Hazam, Coord. Chem. Rev. 514 (2024) 215839, https://doi.org/10.1016/j.ccr.2024.215839. doi: 10.1016/j.ccr.2024.215839

    5. [5]

      B. Das, B. Das, N. S. Das, S. Pal, B. K. Das, S. Sarkar, K. K. Chattopadhyay, Appl. Surf. Sci. 515 (2020) 145958, https://doi.org/10.1016/j.apsusc.2020.145958. doi: 10.1016/j.apsusc.2020.145958

    6. [6]

      M. Li, K. Liang, X. Wei, Y. Zhang, H. Chen, Y. Yang, J. Liu, Y. Tian, Z. Li, L. Duan, Int. J. Hydrogen Energy 81 (2024) 447, https://doi.org/10.1016/j.ijhydene.2024.07.080. doi: 10.1016/j.ijhydene.2024.07.080

    7. [7]

      J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al‐Ghamdi, J. Yu, Small Methods 1 (2017) 1700080, https://doi.org/10.1002/smtd.201700080. doi: 10.1002/smtd.201700080

    8. [8]

      H. He, Z. Wang, J. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191, https://doi.org/10.1039/D5EE01295C. doi: 10.1039/D5EE01295C

    9. [9]

      W. Lu, T. Ding, N. Lu, J. Zhang, K. Yun, P. Zhang, Z. Zhang, Appl. Surf. Sci. 592 (2022) 153348, https://doi.org/10.1016/j.apsusc.2022.153348. doi: 10.1016/j.apsusc.2022.153348

    10. [10]

      X. Wu, R. Zhong, X. Lv, Z. Hu, D. Xia, C. Li, B. Song, S. Liu, Appl. Catal. B Environ. 330 (2023) 122666, https://doi.org/10.1016/j.apcatb.2023.122666. doi: 10.1016/j.apcatb.2023.122666

    11. [11]

      H. Jiang, M. Xu, X. Zhao, H. Wang, Q. Liu, Z. Liu, Q. Liu, G. Yang, P. Huo, Inorg. Chem. 61 (2022) 11207, https://doi.org/10.1021/acs.inorgchem.2c01216. doi: 10.1021/acs.inorgchem.2c01216

    12. [12]

      H. Jiang, J. Xu, L. Sun, J. Li, L. Wang, W. Wang, Q. Liu, J. Yang, Inorg. Chem. 63 (2024) 14746, https://doi.org/10.1021/acs.inorgchem.4c02428. doi: 10.1021/acs.inorgchem.4c02428

    13. [13]

      D. Zu, H. Wei, Z. Lin, X. Bai, M. N. A. S. Ivan, Y. H. Tsang, H. Huang, Adv. Funct. Mater. 34 (2024) 2408213, https://doi.org/10.1002/adfm.202408213. doi: 10.1002/adfm.202408213

    14. [14]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183. doi: 10.1016/j.apmate.2024.100183

    15. [15]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045. doi: 10.3866/PKU.WHXB202307045

    16. [16]

      R. Kumar, A. Sudhaik, A. A. P. Khan, P. Raizada, A. M. Asiri, S. Mohapatra, S. Thakur, V. K. Thakur, P. Singh, J. Ind. Eng. Chem. 106 (2022) 340, https://doi.org/10.1016/j.jiec.2021.11.008. doi: 10.1016/j.jiec.2021.11.008

    17. [17]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1. doi: 10.1016/S1872-2067(23)64496-1

    18. [18]

      S. Li, K. Dong, M. Cai, X. Li, X. Chen, EScience 4 (2024) 100208, https://doi.org/10.1016/j.esci.2023.100208. doi: 10.1016/j.esci.2023.100208

    19. [19]

      J. Li, P. Tu, Q. Yang, Y. Cui, C. Gao, H. Zhou, J. Lu, H. Bian, Sci. Rep. 14 (2024) 10643, https://doi.org/10.1038/s41598-024-60250-z. doi: 10.1038/s41598-024-60250-z

    20. [20]

      X. Li, H. Sun, Y. Xie, Y. Liang, X. Gong, P. Qin, L. Jiang, J. Guo, C. Liu, Z. Wu, Coord. Chem. Rev. 467 (2022) 214596, https://doi.org/10.1016/j.ccr.2022.214596. doi: 10.1016/j.ccr.2022.214596

    21. [21]

      Y. Li, J. Wang, Mater. Adv. 5 (2024) 749, https://doi.org/10.1039/D3MA00915G. doi: 10.1039/D3MA00915G

    22. [22]

      V.-H. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Van Le, E. T. Helmy, Mater. Lett. 313 (2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781. doi: 10.1016/j.matlet.2022.131781

    23. [23]

      R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145, https://doi.org/10.1016/j.jmst.2020.03.027. doi: 10.1016/j.jmst.2020.03.027

    24. [24]

      C. Wang, Y. Zhao, C. Cheng, Q. Li, C. Guo, Y. Hu, Coord. Chem. Rev. 521 (2024) 216177, https://doi.org/10.1016/j.ccr.2024.216177. doi: 10.1016/j.ccr.2024.216177

    25. [25]

      X. Kong, K. Wang, Z. Jin, Sol. RRL 8 (2024) 2400222, https://doi.org/10.1002/solr.202400222. doi: 10.1002/solr.202400222

    26. [26]

      Z. Dong, Z. Zhang, T. Wang, D. Zeng, Z. Cheng, Y. Wang, X. Cao, Y. Wang, Y. Liu, X. Fan, Sep. Purif. Technol. 286 (2022) 120418, https://doi.org/10.1016/j.seppur.2021.120418. doi: 10.1016/j.seppur.2021.120418

    27. [27]

      W. A. Mohamed, A. Alhodaib, H. A. Mousa, H. T. Handal, H. R. Galal, H. H. Abd El-Gawad, B. A. Elsayed, A. A. Labib, M. S. Abdel-Mottaleb, Nanotechnol. Rev. 14 (2025) 20250159, https://doi.org/10.1515/ntrev-2025-0159. doi: 10.1515/ntrev-2025-0159

    28. [28]

      C. Chang, H. Lu, Y. Liu, G. Long, X. Guo, X. Ji, Z. Jin, J. Mater. Chem. A 12 (2024) 4204, https://doi.org/10.1039/D3TA06906K. doi: 10.1039/D3TA06906K

    29. [29]

      Z. Jin, T. Li, L. Zhang, X. Wang, G. Wang, X. Hao, J. Mater. Chem. A 10 (2022) 1976, https://doi.org/10.1039/D1TA09347A. doi: 10.1039/D1TA09347A

    30. [30]

      F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488 (2019) 151, https://doi.org/10.1016/j.apsusc.2019.05.257. doi: 10.1016/j.apsusc.2019.05.257

    31. [31]

      J. Wang, Q. Zhang, F. Deng, X. Luo, D. D. Dionysiou, Chem. Eng. J. 379 (2020) 122264, https://doi.org/10.1016/j.cej.2019.122264. doi: 10.1016/j.cej.2019.122264

    32. [32]

      X. Zou, C. Yuan, Y. Cui, Y. Dong, D. Chen, H. Ge, J. Ke, Sep. Purif. Technol. 266 (2021) 118545, https://doi.org/10.1016/j.seppur.2021.118545. doi: 10.1016/j.seppur.2021.118545

    33. [33]

      Y. Yuan, R.-t. Guo, L.-F. Hong, Z.-D. Lin, X.-Y. Ji, W.-G. Pan, Chemosphere 287 (2022) 132241, https://doi.org/10.1016/j.chemosphere.2021.132241. doi: 10.1016/j.chemosphere.2021.132241

    34. [34]

      H. Wang, Q. Liu, M. Xu, C. Yan, X. Song, X. Liu, H. Wang, W. Zhou, P. Huo, Appl. Surf. Sci. 640 (2023) 158420, https://doi.org/10.1016/j.apsusc.2023.158420. doi: 10.1016/j.apsusc.2023.158420

    35. [35]

      F. Yi, Y. Liu, Y. Chen, J. Zhu, Q. He, C. Yang, D. Ma, J. Liu, Chin. Chem. Lett. 36 (2025) 110544, https://doi.org/10.1016/j.cclet.2024.110544. doi: 10.1016/j.cclet.2024.110544

    36. [36]

      J. Ye, Y. Wan, Y. Li, S. Xu, X. Li, Q. Chen, X. Li, Appl. Surf. Sci. 684 (2025) 161862, https://doi.org/10.1016/j.apsusc.2024.161862. doi: 10.1016/j.apsusc.2024.161862

    37. [37]

      C. You, X. Zhang, Y. Zhao, R. Yan, Y. Shen, Q. Xue, W. Li, T. Liu, J. Jiang, X. Chen, J. Mater. Sci. Technol. 242 (2026) 64, https://doi.org/10.1016/j.jmst.2025.05.002. doi: 10.1016/j.jmst.2025.05.002

    38. [38]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010. doi: 10.1016/j.chempr.2020.06.010

    39. [39]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011. doi: 10.1016/j.jmst.2023.06.011

    40. [40]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y. doi: 10.1007/s40843-023-2725-y

    41. [41]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D. doi: 10.1039/D4CS01091D

    42. [42]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys.-Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014. doi: 10.3866/PKU.WHXB202407014

    43. [43]

      J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011. doi: 10.1016/j.apcatb.2018.11.011

    44. [44]

      S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1. doi: 10.1016/S1872-2067(23)64479-1

    45. [45]

      J. Li, S. Yan, J. Wu, Q. Cheng, K. Wang, Acta Phys. Chim. Sin. 41 (2025) 100104, https://doi.org/10.1016/j.actphy.2025.100104. doi: 10.1016/j.actphy.2025.100104

    46. [46]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426. doi: 10.1002/adfm.202315426

    47. [47]

      M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci. Technol. 122 (2022) 231, https://doi.org/10.1016/j.jmst.2022.02.014. doi: 10.1016/j.jmst.2022.02.014

    48. [48]

      B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li, H. Fu, Adv. Mater. 30 (2018) 1804282, https://doi.org/10.1002/adma.201804282. doi: 10.1002/adma.201804282

    49. [49]

      Z. Li, D. Yang, W. Zhou, Handbook of Green and Sustainable Nanotechnology. Springer, Cham (2023) 2181, https://doi.org/10.1007/978-3-031-16101-8_53.

    50. [50]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009. doi: 10.1016/j.jmst.2023.05.009

    51. [51]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005. doi: 10.3866/PKU.WHXB202403005

    52. [52]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China. Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8. doi: 10.1007/s40843-023-2764-8

    53. [53]

      X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Ba, H. Zhang, L. Zhang, Adv. Mater. 35 (2023) 2209141, https://doi.org/10.1002/adma.202209141. doi: 10.1002/adma.202209141

    54. [54]

      Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu, Y. Wang, Small 20 (2024) 2306692, https://doi.org/10.1002/smll.202306692. doi: 10.1002/smll.202306692

    55. [55]

      H. Han, M. R. Khan, I. Ahmad, A. Al-Qattan, I. Ali, M. R. Karim, H. Bayahia, F. S. Khan, Z. Ahmad, S. Ullah, J. Water Process. Eng. 61 (2024) 105346, https://doi.org/10.1016/j.jwpe.2024.105346. doi: 10.1016/j.jwpe.2024.105346

    56. [56]

      D. A. Sabit, S. E. Ebrahim, Mater. Sci. Semicond. Proc. 163 (2023) 107559, https://doi.org/10.1016/j.mssp.2023.107559. doi: 10.1016/j.mssp.2023.107559

    57. [57]

      A. Wang, W. Wang, J. Ni, D. Liu, D. Liu, J. Ma, X. Jia, Appl. Catal. B: Environ. 328 (2023) 122492, https://doi.org/10.1016/j.apcatb.2023.122492. doi: 10.1016/j.apcatb.2023.122492

    58. [58]

      J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067. doi: 10.1016/j.jmst.2023.03.067

    59. [59]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094

    60. [60]

      Q. Wang, G. Wang, J. Wang, J. Li, K. Wang, S. Zhou, Y. Su, Adv. Sustain. Syst. 7 (2023) 2200027, https://doi.org/10.1002/adsu.202200027. doi: 10.1002/adsu.202200027

    61. [61]

      J. Ding, C. Li, H. Yin, Y. Zhou, S. Wang, K. Liu, M. a. Li, J. Wang, Environ. Pollut. 327 (2023) 121550, https://doi.org/10.1016/j.envpol.2023.121550. doi: 10.1016/j.envpol.2023.121550

    62. [62]

      Y. Wang, H. Wang, X. Li, L. Gao, Y. Li, J. Huo, W. Kang, C. Zou, L. Jia, Appl. Surf. Sci. 616 (2023) 156501, https://doi.org/10.1016/j.apsusc.2023.156501. doi: 10.1016/j.apsusc.2023.156501

    63. [63]

      Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029. doi: 10.1016/j.jmst.2023.07.029

    64. [64]

      Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin, 37 (2021) 2009097, http://dx.doi.org/10.3866/PKU.WHXB202009097. doi: 10.3866/PKU.WHXB202009097

    65. [65]

      S. Yuan, X. Liang, Y. Zheng, Y. Chu, X. Ren, Z. Zeng, G. Nan, Y. Wu, Y. He, J. Colloid Interface Sci. 670 (2024) 373, https://doi.org/10.1016/j.jcis.2024.05.120. doi: 10.1016/j.jcis.2024.05.120

    66. [66]

      X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, Nano Energy 81 (2021) 105671, https://doi.org/10.1016/j.nanoen.2020.105671. doi: 10.1016/j.nanoen.2020.105671

    67. [67]

      Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, https://doi.org/10.1016/j.seppur.2024.127253. doi: 10.1016/j.seppur.2024.127253

    68. [68]

      D. Dastan, Appl. Phys. A 123 (2017) 1, https://doi.org/10.1007/s00339-017-1309-3. doi: 10.1007/s00339-017-1309-3

    69. [69]

      Y. Fu, Y. Xu, Y. Mao, M. Tan, Q. He, H. Mao, H. Du, D. Hao, Q. Wang, Sep. Purif. Technol. 317 (2023) 123922, https://doi.org/10.1016/j.seppur.2023.123922. doi: 10.1016/j.seppur.2023.123922

    70. [70]

      S. Wang, X. Du, C. Yao, Y. Cai, H. Ma, B. Jiang, J. Ma, Nano Res. 16 (2023) 2152, https://doi.org/10.1007/s12274-022-4960-8. doi: 10.1007/s12274-022-4960-8

    71. [71]

      S. A. Ali, S. Majumdar, P. K. Chowdhury, S. M. Alshehri, T. Ahmad, ACS Appl. Energy Mater. 7 (2024) 7325, https://doi.org/10.1021/acsaem.4c01477. doi: 10.1021/acsaem.4c01477

    72. [72]

      Y. Zhang, C. Liang, K. Zhang, Y. Zeng, Y. Zhou, X. Zhang, L. Yin, J. Crittenden, J. Niu, Sep. Purif. Technol. 348 (2024) 127686, https://doi.org/10.1016/j.seppur.2024.127686. doi: 10.1016/j.seppur.2024.127686

    73. [73]

      Z. Jin, T. Wang, E. Cui, X. Yang, Chem. Eng. J. 477 (2023) 147210, https://doi.org/10.1016/j.cej.2023.147210. doi: 10.1016/j.cej.2023.147210

    74. [74]

      H. Huang, H.-L. Wang, W.-F. Jiang, Chemosphere, 318 (2023) 137812, https://doi.org/10.1016/j.chemosphere.2023.137812. doi: 10.1016/j.chemosphere.2023.137812

    75. [75]

      C.-H. Lu, C.-H. Yeh, Ceram. Int. 26 (2000) 351, https://doi.org/10.1016/S0272-8842(99)00063-2. doi: 10.1016/S0272-8842(99)00063-2

    76. [76]

      H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J. P. Giesy, J. Hazard. Mater. 369 (2019) 494, https://doi.org/10.1016/j.jhazmat.2019.02.046. doi: 10.1016/j.jhazmat.2019.02.046

    77. [77]

      J. Qin, M. Zhao, Y. Zhang, J. Shen, X. Wang, Sep. Purif. Technol. 353 (2025) 128622, https://doi.org/10.1016/j.seppur.2024.128622. doi: 10.1016/j.seppur.2024.128622

    78. [78]

      K. Dou, C. Peng, R. Wang, H. Cao, C. Yao, J. Qiu, J. Liu, N. Tsidaeva, W. Wang, Chem. Eng. J. 455 (2023) 140813, https://doi.org/10.1016/j.cej.2022.140813. doi: 10.1016/j.cej.2022.140813

    79. [79]

      Y. Y. Gurkan, E. Kasapbasi, Z. Cinar, Chem. Eng. J. 214 (2013) 34, https://doi.org/10.1016/j.cej.2012.10.025. doi: 10.1016/j.cej.2012.10.025

    80. [80]

      Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234 (2018) 37, https://doi.org/10.1016/j.apcatb.2018.04.026. doi: 10.1016/j.apcatb.2018.04.026

    81. [81]

      Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584. doi: 10.1016/j.cej.2022.136584

    82. [82]

      J. Liu, J. Wan, L. Liu, W. Yang, J. Low, X. Gao, F. Fu, Chem. Eng. J. 430 (2022) 133125, https://doi.org/10.1016/j.cej.2021.133125. doi: 10.1016/j.cej.2021.133125

    83. [83]

      C.-C. Tang, Y.-F. Fang, X.-Q. Cao, H.-L. Tian, Y.-P. Huang, Res. Chem. Intermed. 46 (2020) 509, https://doi.org/10.1007/s11164-019-03963-5. doi: 10.1007/s11164-019-03963-5

    84. [84]

      C. Du, S. He, Y. Xing, Q. Zhao, C. Yu, X. Su, J. Feng, J. Sun, S. Dong, Mater. Today Phys. 27 (2022) 100827, https://doi.org/10.1016/j.mtphys.2022.100827. doi: 10.1016/j.mtphys.2022.100827

    85. [85]

      Y. Wang, X. Zhang, Y. Liu, Y. Zhao, C. Xie, Y. Song, P. Yang, Int. J. Hydrogen Energy 44 (2019) 30151, https://doi.org/10.1016/j.ijhydene.2019.09.181. doi: 10.1016/j.ijhydene.2019.09.181

    86. [86]

      R. Tsuruta, Y. Mizuno, T. Hosokai, T. Koganezawa, H. Ishii, Y. Nakayama, J. Cryst. Growth 468 (2017) 770, https://doi.org/10.1016/j.jcrysgro.2016.10.031. doi: 10.1016/j.jcrysgro.2016.10.031

    87. [87]

      J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/D4EE01808G. doi: 10.1039/D4EE01808G

    88. [88]

      X. Li, J. Zhang, Z. Wang, J. Fu, S. Li, K. Dai, M. Liu, Chem. Eur. J. 29 (2023) e202202669, https://doi.org/10.1002/chem.202202669. doi: 10.1002/chem.202202669

    89. [89]

      F. Zhang, Y. Li, B. Ding, G. Shao, N. Li, P. Zhang, Small 19 (2023) 2303867, https://doi.org/10.1002/smll.202303867. doi: 10.1002/smll.202303867

    90. [90]

      Y. Shao, X. Hao, W. Deng, Z. Jin, Mater. Today Chem. 38 (2024) 102075, https://doi.org/10.1016/j.mtchem.2024.102075. doi: 10.1016/j.mtchem.2024.102075

    91. [91]

      L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447. doi: 10.1002/smll.202103447

    92. [92]

      T. Wang, Z. Jin, J. Mater. Sci. Technol. 155 (2023) 132, https://doi.org/10.1016/j.jmst.2023.03.002. doi: 10.1016/j.jmst.2023.03.002

    93. [93]

      F. A. Qaraah, S. A. Mahyoub, A. Hezam, A. Qaraah, F. Xin, G. Xiu, Appl. Catal. B Environ. 315 (2022) 121585, https://doi.org/10.1016/j.apcatb.2022.121585. doi: 10.1016/j.apcatb.2022.121585

    94. [94]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036

    95. [95]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001. doi: 10.1016/j.jmst.2024.12.001

    96. [96]

      R. Chen, L. Li, Y. Gong, H. Lou, Y. Pang, D. Yang, X. Qiu, J. Mater. Sci. Technol. 202 (2024) 67, https://doi.org/10.1016/j.jmst.2024.02.080. doi: 10.1016/j.jmst.2024.02.080

    97. [97]

      L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391 (2017) 202, https://doi.org/10.1016/j.apsusc.2016.07.055. doi: 10.1016/j.apsusc.2016.07.055

    98. [98]

      Y. Wang, R. Shi, J. Lin, Y. Zhu, Energy Environ. Sci. 4 (2011) 2922, https://doi.org/10.1039/C0EE00825G. doi: 10.1039/C0EE00825G

    99. [99]

      R. Banyal, P. Raizada, T. Ahamad, S. Kaya, M. M. Maslov, V. Chaudhary, C. M. Hussain, P. Singh, J. Phys. Chem. Solids 195 (2024) 112132, https://doi.org/10.1016/j.jpcs.2024.112132. doi: 10.1016/j.jpcs.2024.112132

    100. [100]

      C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 430 (2022) 132806, https://doi.org/10.1016/j.cej.2021.132806. doi: 10.1016/j.cej.2021.132806

    101. [101]

      K. Liu, J. Zhang, J. Ma, R. Sun, Green Chem. 26 (2024) 2893, https://doi.org/10.1039/D3GC03990K. doi: 10.1039/D3GC03990K

    102. [102]

      F. Zhao, I. Ahmad, H. Bayahia, S. AlFaify, K. M. Alanezi, M. Q. Alfaifi, M. D. Ali, Y. Y. Ghadi, I. Ali, T. L. Tamang, Int. J. Hydrog. Energy 80 (2024) 659, https://doi.org/10.1016/j.ijhydene.2024.07.156. doi: 10.1016/j.ijhydene.2024.07.156

    103. [103]

      L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009. doi: 10.1016/j.matt.2022.09.009

    104. [104]

      X. Yue, L. Cheng, J. Fan, Q. Xiang, Appl. Catal. B: Environ. 304 (2022) 120979, https://doi.org/10.1016/j.apcatb.2021.120979. doi: 10.1016/j.apcatb.2021.120979

    105. [105]

      W. Zhou, H. Fu, Inorg. Chem. Front. 5 (2018) 1240, https://doi.org/10.1039/C8QI00122G. doi: 10.1039/C8QI00122G

    106. [106]

      D. Shi, J. Jiang, D. Wang, M. Huo, S. Dong, J. Environ. Chem. Eng. 12 (2024) 112982, https://doi.org/10.1016/j.jece.2024.112982. doi: 10.1016/j.jece.2024.112982

    107. [107]

      N. Fang, Y. Ding, C. Liu, Z. Chen, Appl. Surf. Sci. 452 (2018) 49, https://doi.org/10.1016/j.apsusc.2018.04.273. doi: 10.1016/j.apsusc.2018.04.273

    108. [108]

      H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B: Environ. 144 (2014) 75, https://doi.org/10.1016/j.apcatb.2013.06.023. doi: 10.1016/j.apcatb.2013.06.023

    109. [109]

      T. Liu, L. Bai, N. Tian, J. Liu, Y. Zhang, H. Huang, Int. J. Hydrog. Energy 48 (2023) 12257, https://doi.org/10.1016/j.ijhydene.2022.12.121. doi: 10.1016/j.ijhydene.2022.12.121

    110. [110]

      K. A. Stewart, B.-S. Yeh, J. F. Wager, J. Non-Cryst. Solids. 432 (2016) 196, https://doi.org/10.1016/j.jnoncrysol.2015.10.005. doi: 10.1016/j.jnoncrysol.2015.10.005

    111. [111]

      L. Xie, T. Du, J. Wang, Y. Ma, Y. Ni, Z. Liu, L. Zhang, C. Yang, J. Wang, Chem. Eng. J. 426 (2021) 130617, https://doi.org/10.1016/j.cej.2021.130617. doi: 10.1016/j.cej.2021.130617

    112. [112]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006. doi: 10.1016/j.apcatb.2020.119006

    113. [113]

      S. Zhang, Y. Si, B. Li, L. Yang, W. Dai, S. Luo, Small 17 (2021) 2004980, https://doi.org/10.1002/smll.202004980. doi: 10.1002/smll.202004980

    114. [114]

      Y. Chen, Y. Cheng, J. Zhao, W. Zhang, J. Gao, H. Miao, X. Hu, J. Colloid Interface Sci. 627 (2022) 1047, https://doi.org/10.1016/j.jcis.2022.07.117. doi: 10.1016/j.jcis.2022.07.117

    115. [115]

      M. Yang, Y. Wu, Y. Zhang, X. Li, Z. Jin, J. Environ. Chem. Eng. 11 (2023) 110795, https://doi.org/10.1016/j.jece.2023.110795. doi: 10.1016/j.jece.2023.110795

    116. [116]

      M. A. Nazir, T. Najam, M. Altaf, K. Ahmad, I. Hossain, M. A. Assiri, M. S. Javed, A. ur Rehman, S. S. A. Shah, J. Alloys Compd. 990 (2024) 174378, https://doi.org/10.1016/j.jallcom.2024.174378. doi: 10.1016/j.jallcom.2024.174378

    117. [117]

      B. Han, Y. H. Hu, Energy Sci. Eng. 4 (2016) 285, https://doi.org/10.1002/ese3.128. doi: 10.1002/ese3.128

    118. [118]

      C. Zuo, Q. Su, X. Yan, Processes 11 (2023) 867, https://doi.org/10.3390/pr11030867. doi: 10.3390/pr11030867

    119. [119]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013. doi: 10.3866/PKU.WHXB202310013

    120. [120]

      Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys. Chim. Sin. 39 (2023) 2211051, https://doi.org/10.3866/PKU.WHXB202211051. doi: 10.3866/PKU.WHXB202211051

    121. [121]

      V. Dutta, A. Sudhaik, P. Raizada, A. Singh, T. Ahamad, S. Thakur, Q. Van Le, V.-H. Nguyen, P. Singh, J. Mater. Sci. Technol. 162 (2023) 11, https://doi.org/10.1016/j.jmst.2023.03.037. doi: 10.1016/j.jmst.2023.03.037

    122. [122]

      H. Peng, Z. Xing, W. Kong, C. Wu, B. Fang, Y. Cui, Z. Li, H. Liu, W. Zhou, Fuel 346 (2023) 128368, https://doi.org/10.1016/j.fuel.2023.128368. doi: 10.1016/j.fuel.2023.128368

    123. [123]

      A. Kumar, Y. Singla, M. Sharma, A. Bhardwaj, V. Krishnan, Chemosphere 308 (2022) 136212, https://doi.org/10.1016/j.chemosphere.2022.136212. doi: 10.1016/j.chemosphere.2022.136212

    124. [124]

      H. Lv, C. Zhou, Q. Shen, Y. Kong, B. Wan, Z. Suo, G. Wang, G. Wang, Y. Liu, J. Colloid Interface Sci. 677 (2025) 365, https://doi.org/10.1016/j.jcis.2024.08.072. doi: 10.1016/j.jcis.2024.08.072

    125. [125]

      Z. Xu, W. Shi, Y. Shi, H. Sun, L. Li, F. Guo, H. Wen, Appl. Surf. Sci. 595 (2022) 153482, https://doi.org/10.1016/j.apsusc.2022.153482. doi: 10.1016/j.apsusc.2022.153482

    126. [126]

      H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G. Q. Xu, Y. Zhang, Catal. Sci. Technol. 9 (2019) 4898, https://doi.org/10.1039/C9CY01086F. doi: 10.1039/C9CY01086F

    127. [127]

      Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Chem. Eng. J. 427 (2022) 131830, https://doi.org/10.1016/j.cej.2021.131830. doi: 10.1016/j.cej.2021.131830

    128. [128]

      R. Liang, Z. He, Y. Lu, G. Yan, L. Wu, Sep. Purif. Technol. 277 (2021) 119442, https://doi.org/10.1016/j.seppur.2021.119442. doi: 10.1016/j.seppur.2021.119442

    129. [129]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024) 215674, https://doi.org/10.1016/j.ccr.2024.215674. doi: 10.1016/j.ccr.2024.215674

    130. [130]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    131. [131]

      J. Qin, Y. An, Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002 doi: 10.3866/PKU.WHXB202408002

    132. [132]

      Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021. doi: 10.3866/PKU.WHXB202407021

    133. [133]

      J. Lei, Z. Wang, J. Huo, S. Sang, C. Zhang, E. Zhu, T. Kong, F. Karadas, J. Low, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202422667, https://doi.org/10.1002/anie.202422667. doi: 10.1002/anie.202422667

    134. [134]

      D.-d. Hu, R.-t. Guo, C.-f. Li, J.-s. Yan, W.-g. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473. doi: 10.1016/j.seppur.2024.128473

    135. [135]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081. doi: 10.1016/j.jmst.2023.11.081

    136. [136]

      A. H. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020. doi: 10.3866/PKU.WHXB202406020

    137. [137]

      Q. Zhang, Z. Wang, Y. Song, J. Fan, T. Sun, E. Liu, J. Mater. Sci. Technol. 169 (2024) 148, https://doi.org/10.1016/j.jmst.2023.05.066. doi: 10.1016/j.jmst.2023.05.066

    138. [138]

      M. Li, J.-Z. Wang, Z.-L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y. doi: 10.1007/s12598-023-02539-y

    139. [139]

      N. M. Gupta, Renew. Sust. Energy Rev. 71 (2017) 585, https://doi.org/10.1016/j.rser.2016.12.086. doi: 10.1016/j.rser.2016.12.086

    140. [140]

      F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6. doi: 10.1016/S1872-2067(19)63382-6

    141. [141]

      J. Xiao, Y. Xie, H. Cao, Chemosphere 121 (2015) 1, https://doi.org/10.1016/j.chemosphere.2014.10.072. doi: 10.1016/j.chemosphere.2014.10.072

    142. [142]

      M. Zhang, T. Wang, C. Bian, N. Yang, H. Qi, Sep. Purif. Techol. 306 (2023) 122736, https://doi.org/10.1016/j.seppur.2022.122736. doi: 10.1016/j.seppur.2022.122736

    143. [143]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050. doi: 10.1016/j.actphy.2025.100050

    144. [144]

      W. Kong, Z. Xing, H. Zhang, B. Fang, Y. Cui, Z. Li, P. Chen, W. Zhou, J. Mater. Chem. C 10 (2022) 18164, https://doi.org/10.1039/D2TC03943E. doi: 10.1039/D2TC03943E

    145. [145]

      Y. Kumar, K. Sharma, A. Sudhaik, P. Raizada, S. Thakur, V.-H. Nguyen, Q. Van Le, T. Ahamad, S. M. Alshehri, P. Singh, Appl. Nanosci. 13 (2023) 4129, https://doi.org/10.1007/s13204-022-02743-9. doi: 10.1007/s13204-022-02743-9

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  88
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-18
  • 接受日期:  2025-08-06
  • 修回日期:  2025-08-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章