Citation: Chengxiao Zhao,  Zhaolin Li,  Dongfang Wu,  Xiaofei Yang. SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100149. doi: 10.1016/j.actphy.2025.100149 shu

SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production

  • Corresponding author: Dongfang Wu,  Xiaofei Yang, 
  • Received Date: 24 June 2025
    Revised Date: 2 August 2025

  • Covalent triazine frameworks (CTFs) represent an attractive family of metal-free visible light-responsive covalent organic frameworks (COFs), possessing promising characteristics such as large specific surface area, rich nitrogen content, permanent porosity, and high thermal and chemical stability for photocatalytic hydrogen production via water splitting. Nevertheless, the majority of CTFs are confronted with difficulty in chemical synthesis and generally suffer from low electric conductivity and severe photogenerated charge carrier recombination during photocatalytic hydrogen evolution reaction (HER). The hydrogen-evolving performance highly depends on the structure of p-conjugated CTFs and the synthetic methods, and controlled synthesis of well-defined nanostructures is still highly challenging. In this work, we report the organic acid-catalyzed synthesis of porous CTF nanoarchitectures templated by mesoporous silica molecular sieve SBA-15 with a highly ordered hexagonal structure. The SBA-15-templated CTF-S2 nanorods exhibited a substantial increase in photocatalytic HER efficiency, with an impressive 14-fold enhancement compared to the micro-sized bulk CTF-1 (4.1 μmol h−1). This remarkable improvement in the photocatalytic HER over SBA-templated CTF-S2 nanostructure is attributed to the extended visible light absorption, accelerated charge carrier transfer and the optimized band structure.
  • 加载中
    1. [1]

      T. Zhang, G. Zhang, L. Chen, Acc. Chem. Res. 55(2022) 795, https://doi.org/10.1021/acs.accounts.1c00693.

    2. [2]

      C. Qian, L. Feng, W. L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 6(2022) 881, https://doi.org/10.1038/s41570-022-00437-y.

    3. [3]

      L. Wang, Y. Zhang, Small 21(2025) 2408395, https://doi.org/10.1002/smll.202408395.

    4. [4]

      A. Rodríguez-Camargo, K. Endo, B. V. Lotsch, Angew. Chem. Int. Ed. 63(2024) e202413096, https://doi.org/10.1002/anie.202413096.

    5. [5]

      L. Yuan, Y. Peng, Z.-J. Guan, Y. Fang, Acta Phys. Chim. Sin. 41(2025) 100086, https://doi.org/10.1016/j.actphy.2025.100086.

    6. [6]

      Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. Chim. Sin. 40(2024) 2405005, https://doi.org/10.3866/PKU.WHXB202405005.

    7. [7]

      C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12(2024) 5711, https://doi.org/10.1039/D3TA07951A.

    8. [8]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024) 101040, https://doi.org/10.1016/j.coche.2024.101040.

    9. [9]

      C. Krishnaraj, H.S. Jena, K. Leus, P. Van der Voort, Green Chem. 22(2020) 1038, https://doi.org/10.1039/C9GC03482J.

    10. [10]

      A.J. Liang, W.B. Li, A.B. Li, H. Peng, G.F. Ma, L. Zhu, Z.Q. Lei, Y.X. Xu, Nano Res. 17(2024) 7830, https://doi.org/10.1007/s12274-024-6779-y.

    11. [11]

      R. Sun, B. Tan, Chem. Eur. J. 29(2023) e202203077, https://doi.org/10.1002/chem.202203077.

    12. [12]

      S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Angew. Chem. Int. Ed. 57(2018) 8438, https://doi.org/10.1002/anie.201801128.

    13. [13]

      T. Sun, Y. Liang, W. Luo, L. Zhang, X. Cao, Y. Xu, Angew. Chem. Int. Ed. 61(2022) e202203327, https://doi.org/10.1002/anie.202203327.

    14. [14]

      Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D.-E. Jiang, X. Zhu, I. Popovs, S. Dai, J. Am. Chem. Soc. 142(2020) 6856, https://doi.org/10.1021/jacs.0c00365.

    15. [15]

      C. Zhao, Z. Li, X. Wu, H. Su, F.-Q. Bai, X. Ran, L. Yang, W. Fang, X. Yang, Small 20(2024) 2400541, https://doi.org/10.1002/smll.202400541.

    16. [16]

      Z. Li, T. Li, J. Miao, C. Zhao, Y. Jing, F. Han, K. Zhang, X. Yang, Sci. China Mater. 66(2023) 2290, https://doi.org/10.1007/s40843-022-2394-6.

    17. [17]

      T. Sun, Y. Liang, Y. Xu, Angew. Chem. Int. Ed. 61(2022) e202113926, https://doi.org/10.1002/anie.202113926.

    18. [18]

      C.X. Wang, P. Lyu, Z. Chen, Y.X. Xu, J. Am. Chem. Soc. 145(2023) 12745, https://doi.org/10.1021/jacs.3c02874.

    19. [19]

      Z.-A. Lan, M. Wu, Z. Fang, Y. Zhang, X. Chen, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 61(2022) e202201482, https://doi.org/10.1002/anie.202201482.

    20. [20]

      S.Q. Zhang, G. Cheng, L.P. Guo, N. Wang, B.E. Tan, S.B. Jin, Angew. Chem. Int. Ed. 59(2020) 6007, https://doi.org/10.1002/anie.201914424.

    21. [21]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40(2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.

    22. [22]

      C.X. Wang, H.L. Zhang, W.J. Luo, T. Sun, Y.X. Xu, Angew. Chem. Int. Ed. 60(2021) 25381, https://doi.org/10.1002/anie.202109851.

    23. [23]

      S. Li, M.-F. Wu, T. Guo, L.-L. Zheng, D. Wang, Y. Mu, Q.-J. Xing, J.-P. Zou, Appl. Catal. B Environ. 272(2020) 118989, https://doi.org/10.1016/j.apcatb.2020.118989.

    24. [24]

      K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen, Science 359(2018) 206, https://doi.org/10.1126/science.aao3403.

    25. [25]

      H. Luo, Y.V. Kaneti, Y. Ai, Y. Wu, F. Wei, J. Fu, J. Cheng, C. Jing, B. Yuliarto, M. Eguchi, J. Na, Y. Yamauchi, S. Liu, Adv. Mater. 33(2021) 2007318, https://doi.org/10.1002/adma.202007318.

    26. [26]

      R.-R. Liang, S.-Y. Jiang, R.-H. A, X. Zhao, Chem. Soc. Rev. 49(2020) 3920, https://doi.org/10.1039/D0CS00049C.

    27. [27]

      F. Heck, L. Grunenberg, N. Schnabel, T. Sottmann, L. Yao, B.V. Lotsch, ChemRxiv Version 1(2024), https://doi.org/10.26434/chemrxiv-2024-wd9ft.

    28. [28]

      I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, J. Roeser, J. Schmidt, A. Thomas, Chem Mater 36(2024) 8330, https://doi.org/10.1021/acs.chemmater.4c01298.

    29. [29]

      N. He, Y. Zou, C. Chen, M. Tan, Y. Zhang, X. Li, Z. Jia, J. Zhang, H. Long, H. Peng, K. Yu, B. Jiang, Z. Han, N. Liu, Y. Li, L. Ma, Nat. Commun. 15(2024) 3896, https://doi.org/10.1038/s41467-024-48160-0.

    30. [30]

      X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Appl. Catal. B Environ. 244(2019) 240, https://doi.org/10.1016/j.apcatb.2018.11.056.

    31. [31]

      T. Zhang, Y. Hou, V. Dzhagan, Z. Liao, G. Chai, M. Löffler, D. Olianas, A. Milani, S. Xu, M. Tommasini, D.R.T. Zahn, Z. Zheng, E. Zschech, R. Jordan, X. Feng, Nat. Commun. 9(2018) 1140, https://doi.org/10.1038/s41467-018-03444-0.

    32. [32]

      Y. Lu, Z. Li, J. Liang, X. Xu, G. Zhang, H. Min, Desalination 592 (2024) 118196, https://doi.org/10.1016/j.desal.2024.118196.

    33. [33]

      Z. Shen, X. Wang, D. Fan, X. Xu, Y. Lu, J. Mater. Sci. 58(2023) 13154, https://doi.org/10.1007/s10853-023-08849-x.

    34. [34]

      J. Liu, W. Zan, K. Li, Y. Yang, F. Bu, Y. Xu, J. Am. Chem. Soc. 139(2017) 11666, https://doi.org/10.1021/jacs.7b05025.

    35. [35]

      K. Wu, Q. Ye, L. Wang, F. Meng, H. Dai, Appl. Clay Sci. 229 (2022) 106660, https://doi.org/10.1016/j.clay.2022.106660.

    36. [36]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40(2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

    37. [37]

      L. Zhang, J. Zhang, J. Yu. H. García, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.

    38. [38]

      J. Zhu, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 49 (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9.

    39. [39]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.

    40. [40]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.

    41. [41]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1.

    42. [42]

      D. Kong, X. Han, J. Xie, Q. Ruan, C. D. Windle, S. Gadipelli, K. Shen, Z. Bai, Z. Guo, J. Tang, ACS Catal. 9(2019) 7697, https://doi.org/10.1021/acscatal.9b02195.

    43. [43]

      J.-H. Tsai, T.-Y. Lee, H.-L. Chiang, Nanomaterials 13(2023) 1015, https://doi.org/10.3390/nano13061015.

    44. [44]

      Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S.-W. Yang, X. Liu, J. Am. Chem. Soc. 145(2023) 8364, https://doi.org/10.1021/jacs.2c11893.

  • 加载中
    1. [1]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    5. [5]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    6. [6]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return