Citation:
Chengxiao Zhao, Zhaolin Li, Dongfang Wu, Xiaofei Yang. SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100149.
doi:
10.1016/j.actphy.2025.100149
-
Covalent triazine frameworks (CTFs) represent an attractive family of metal-free visible light-responsive covalent organic frameworks (COFs), possessing promising characteristics such as large specific surface area, rich nitrogen content, permanent porosity, and high thermal and chemical stability for photocatalytic hydrogen production via water splitting. Nevertheless, the majority of CTFs are confronted with difficulty in chemical synthesis and generally suffer from low electric conductivity and severe photogenerated charge carrier recombination during photocatalytic hydrogen evolution reaction (HER). The hydrogen-evolving performance highly depends on the structure of
p -conjugated CTFs and the synthetic methods, and controlled synthesis of well-defined nanostructures is still highly challenging. In this work, we report the organic acid-catalyzed synthesis of porous CTF nanoarchitectures templated by mesoporous silica molecular sieve SBA-15 with a highly ordered hexagonal structure. The SBA-15-templated CTF-S2 nanorods exhibited a substantial increase in photocatalytic HER efficiency, with an impressive 14-fold enhancement compared to the micro-sized bulk CTF-1 (4.1 μmol h−1). This remarkable improvement in the photocatalytic HER over SBA-templated CTF-S2 nanostructure is attributed to the extended visible light absorption, accelerated charge carrier transfer and the optimized band structure. -
-
-
[1]
T. Zhang, G. Zhang, L. Chen, Acc. Chem. Res. 55(2022) 795, https://doi.org/10.1021/acs.accounts.1c00693.
-
[2]
C. Qian, L. Feng, W. L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 6(2022) 881, https://doi.org/10.1038/s41570-022-00437-y.
-
[3]
L. Wang, Y. Zhang, Small 21(2025) 2408395, https://doi.org/10.1002/smll.202408395.
-
[4]
A. Rodríguez-Camargo, K. Endo, B. V. Lotsch, Angew. Chem. Int. Ed. 63(2024) e202413096, https://doi.org/10.1002/anie.202413096.
-
[5]
L. Yuan, Y. Peng, Z.-J. Guan, Y. Fang, Acta Phys. Chim. Sin. 41(2025) 100086, https://doi.org/10.1016/j.actphy.2025.100086.
-
[6]
Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. Chim. Sin. 40(2024) 2405005, https://doi.org/10.3866/PKU.WHXB202405005.
-
[7]
C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12(2024) 5711, https://doi.org/10.1039/D3TA07951A.
-
[8]
J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024) 101040, https://doi.org/10.1016/j.coche.2024.101040.
-
[9]
C. Krishnaraj, H.S. Jena, K. Leus, P. Van der Voort, Green Chem. 22(2020) 1038, https://doi.org/10.1039/C9GC03482J.
-
[10]
A.J. Liang, W.B. Li, A.B. Li, H. Peng, G.F. Ma, L. Zhu, Z.Q. Lei, Y.X. Xu, Nano Res. 17(2024) 7830, https://doi.org/10.1007/s12274-024-6779-y.
-
[11]
R. Sun, B. Tan, Chem. Eur. J. 29(2023) e202203077, https://doi.org/10.1002/chem.202203077.
-
[12]
S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Angew. Chem. Int. Ed. 57(2018) 8438, https://doi.org/10.1002/anie.201801128.
-
[13]
T. Sun, Y. Liang, W. Luo, L. Zhang, X. Cao, Y. Xu, Angew. Chem. Int. Ed. 61(2022) e202203327, https://doi.org/10.1002/anie.202203327.
-
[14]
Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D.-E. Jiang, X. Zhu, I. Popovs, S. Dai, J. Am. Chem. Soc. 142(2020) 6856, https://doi.org/10.1021/jacs.0c00365.
-
[15]
C. Zhao, Z. Li, X. Wu, H. Su, F.-Q. Bai, X. Ran, L. Yang, W. Fang, X. Yang, Small 20(2024) 2400541, https://doi.org/10.1002/smll.202400541.
-
[16]
Z. Li, T. Li, J. Miao, C. Zhao, Y. Jing, F. Han, K. Zhang, X. Yang, Sci. China Mater. 66(2023) 2290, https://doi.org/10.1007/s40843-022-2394-6.
-
[17]
T. Sun, Y. Liang, Y. Xu, Angew. Chem. Int. Ed. 61(2022) e202113926, https://doi.org/10.1002/anie.202113926.
-
[18]
C.X. Wang, P. Lyu, Z. Chen, Y.X. Xu, J. Am. Chem. Soc. 145(2023) 12745, https://doi.org/10.1021/jacs.3c02874.
-
[19]
Z.-A. Lan, M. Wu, Z. Fang, Y. Zhang, X. Chen, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 61(2022) e202201482, https://doi.org/10.1002/anie.202201482.
-
[20]
S.Q. Zhang, G. Cheng, L.P. Guo, N. Wang, B.E. Tan, S.B. Jin, Angew. Chem. Int. Ed. 59(2020) 6007, https://doi.org/10.1002/anie.201914424.
-
[21]
K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40(2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.
-
[22]
C.X. Wang, H.L. Zhang, W.J. Luo, T. Sun, Y.X. Xu, Angew. Chem. Int. Ed. 60(2021) 25381, https://doi.org/10.1002/anie.202109851.
-
[23]
S. Li, M.-F. Wu, T. Guo, L.-L. Zheng, D. Wang, Y. Mu, Q.-J. Xing, J.-P. Zou, Appl. Catal. B Environ. 272(2020) 118989, https://doi.org/10.1016/j.apcatb.2020.118989.
-
[24]
K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen, Science 359(2018) 206, https://doi.org/10.1126/science.aao3403.
-
[25]
H. Luo, Y.V. Kaneti, Y. Ai, Y. Wu, F. Wei, J. Fu, J. Cheng, C. Jing, B. Yuliarto, M. Eguchi, J. Na, Y. Yamauchi, S. Liu, Adv. Mater. 33(2021) 2007318, https://doi.org/10.1002/adma.202007318.
-
[26]
R.-R. Liang, S.-Y. Jiang, R.-H. A, X. Zhao, Chem. Soc. Rev. 49(2020) 3920, https://doi.org/10.1039/D0CS00049C.
-
[27]
F. Heck, L. Grunenberg, N. Schnabel, T. Sottmann, L. Yao, B.V. Lotsch, ChemRxiv Version 1(2024), https://doi.org/10.26434/chemrxiv-2024-wd9ft.
-
[28]
I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, J. Roeser, J. Schmidt, A. Thomas, Chem Mater 36(2024) 8330, https://doi.org/10.1021/acs.chemmater.4c01298.
-
[29]
N. He, Y. Zou, C. Chen, M. Tan, Y. Zhang, X. Li, Z. Jia, J. Zhang, H. Long, H. Peng, K. Yu, B. Jiang, Z. Han, N. Liu, Y. Li, L. Ma, Nat. Commun. 15(2024) 3896, https://doi.org/10.1038/s41467-024-48160-0.
-
[30]
X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Appl. Catal. B Environ. 244(2019) 240, https://doi.org/10.1016/j.apcatb.2018.11.056.
-
[31]
T. Zhang, Y. Hou, V. Dzhagan, Z. Liao, G. Chai, M. Löffler, D. Olianas, A. Milani, S. Xu, M. Tommasini, D.R.T. Zahn, Z. Zheng, E. Zschech, R. Jordan, X. Feng, Nat. Commun. 9(2018) 1140, https://doi.org/10.1038/s41467-018-03444-0.
-
[32]
Y. Lu, Z. Li, J. Liang, X. Xu, G. Zhang, H. Min, Desalination 592 (2024) 118196, https://doi.org/10.1016/j.desal.2024.118196.
-
[33]
Z. Shen, X. Wang, D. Fan, X. Xu, Y. Lu, J. Mater. Sci. 58(2023) 13154, https://doi.org/10.1007/s10853-023-08849-x.
-
[34]
J. Liu, W. Zan, K. Li, Y. Yang, F. Bu, Y. Xu, J. Am. Chem. Soc. 139(2017) 11666, https://doi.org/10.1021/jacs.7b05025.
-
[35]
K. Wu, Q. Ye, L. Wang, F. Meng, H. Dai, Appl. Clay Sci. 229 (2022) 106660, https://doi.org/10.1016/j.clay.2022.106660.
-
[36]
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40(2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.
-
[37]
L. Zhang, J. Zhang, J. Yu. H. García, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
-
[38]
J. Zhu, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 49 (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9.
-
[39]
C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.
-
[40]
S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.
-
[41]
M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1.
-
[42]
D. Kong, X. Han, J. Xie, Q. Ruan, C. D. Windle, S. Gadipelli, K. Shen, Z. Bai, Z. Guo, J. Tang, ACS Catal. 9(2019) 7697, https://doi.org/10.1021/acscatal.9b02195.
-
[43]
J.-H. Tsai, T.-Y. Lee, H.-L. Chiang, Nanomaterials 13(2023) 1015, https://doi.org/10.3390/nano13061015.
-
[44]
Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S.-W. Yang, X. Liu, J. Am. Chem. Soc. 145(2023) 8364, https://doi.org/10.1021/jacs.2c11893.
-
[1]
-
-
-
[1]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[2]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[3]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[4]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
-
[5]
Yihong Shao , Rongchen Shen , Song Wang , Shijie Li , Peng Zhang , Xin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176
-
[6]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[7]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[8]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[9]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013
-
[14]
Yueshuai Xu , Wei Liu , Xudong Chen , Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045
-
[15]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[16]
Wei Li , Jinfan Xu , Yongjun Zhang , Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[19]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[20]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(6)
- HTML views(1)
Login In
DownLoad: