TiO2/CdS S型异质结促进光催化CO2甲烷化及其飞秒瞬态吸收光谱机理研究

霍怡廷 周欣 赵非凡 艾陈斌 吴珍 常志东 朱必成

引用本文: 霍怡廷, 周欣, 赵非凡, 艾陈斌, 吴珍, 常志东, 朱必成. TiO2/CdS S型异质结促进光催化CO2甲烷化及其飞秒瞬态吸收光谱机理研究[J]. 物理化学学报, 2025, 41(11): 100148. doi: 10.1016/j.actphy.2025.100148 shu
Citation:  Yiting Huo, Xin Zhou, Feifan Zhao, Chenbin Ai, Zhen Wu, Zhidong Chang, Bicheng Zhu. Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100148. doi: 10.1016/j.actphy.2025.100148 shu

TiO2/CdS S型异质结促进光催化CO2甲烷化及其飞秒瞬态吸收光谱机理研究

    通讯作者: 常志东, zdchang@ustb.edu.cn; 朱必成, zhubicheng@cug.edu.cn
  • 基金项目:

    国家自然科学基金 52173065

    国家自然科学基金 22469001

    内蒙古自然科学基金 2025QN05107

    内蒙古自然科学基金 2025ZDLH002

摘要: 通过光催化将CO2转化为高附加值碳氢化合物在可持续能源领域具有巨大潜力,但实现高活性和选择性仍然具有挑战性。本文中,一种新型的TiO2/CdS异质结光催化剂在光催化CO2还原中表现出优异的性能。优化后的催化剂的CH4产率比纯TiO2提高了4.2倍,且对CH4的选择性高达65.4% (CO为34.6%)。其增强的活性源于独特的形貌,促进了CO2的吸附和传质,以及CdS与TiO2之间形成紧密的S型异质结,这提高了电荷分离效率,同时保持了强氧化还原电位。并且,飞秒瞬态吸收光谱(fs-TAS)与原位漫反射红外傅里叶变换光谱(DRIFTS)相结合,为光催化二氧化碳还原路径提供了直接证据,并确定了CdS上的硫位点是稳定*CH3O、*CHO和*CO中间体的关键,从而促进选择性生成CH4。此外,基于密度泛函理论(DFT)的理论计算进一步补充了实验结果。计算证实了S型异质结的电子结构特征,揭示了原子尺度上的能级和电荷转移机制。这不仅加深了我们对光催化过程的理解,还为进一步优化光催化剂设计提供了理论基础。总体而言,我们的工作展示了TiO2/CdS异质结光催化剂在光催化CO2还原中的优异性能。

English

    1. [1]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    2. [2]

      W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, X. B., Nature 626 (2024) 86, https://doi.org/10.1038/s41586-023-06917-5. doi: 10.1038/s41586-023-06917-5

    3. [3]

      S. Capelo-Avilés, M. de Fez-Febré, S. R. Balestra, J. Cabezas-Giménez, R. Tomazini de Oliveira, I. I. Gallo Stampino, J. R. Galán-Mascarós, Nat. Commun. 16 (2025) 3243, https://doi.org/10.1038/s41467-025-58426-w. doi: 10.1038/s41467-025-58426-w

    4. [4]

      Y. Huo, Z. Wu, Y. Yang, B. Dong, Z. Chang, Molecules 30 (2025) 2317, https://doi.org/10.3390/molecules30112317. doi: 10.3390/molecules30112317

    5. [5]

      L. Liu, H. W. Huang, Z. Chen, H. Yu, K. Wang, J. Huang, H. Yu, Y. Zhang, Angew. Chem. Int. Ed. 60 (2021) 18303, https://doi.org/10.1002/anie.202106310. doi: 10.1002/anie.202106310

    6. [6]

      C. Guo, L. Wang, Y. Tang, Z. Yang, Y. Zhao, Y. Jiang, X. Wen, F. Wang, Adv. Funct. Mater. 35 (2025) 2414931, https://doi.org/10.1002/adfm.202414931. doi: 10.1002/adfm.202414931

    7. [7]

      A. Anus, S. Park, Chem. Eng. J. 486 (2024) 150213, https://doi.org/10.1016/j.cej.2024.150213. doi: 10.1016/j.cej.2024.150213

    8. [8]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B: Environ. 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167. doi: 10.1016/j.apcatb.2024.124167

    9. [9]

      Y. He, P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 14 (2024) 1951, https://pubs.acs.org/doi/full/10.1021/acscatal.4c00026. doi: 10.1021/acscatal.4c00026

    10. [10]

      Z. Yuan, X. Zhu, X. Gao, C. An, Z. Wang, C. Zuo, D. D. Dionysiou, H. He, Z. Jiang, Environ. Sci. Ecotechnol. 20 (2024) 100368, https://doi.org/10.1016/j.ese.2023.100368. doi: 10.1016/j.ese.2023.100368

    11. [11]

      J. Chen, T. Li, X. An, D. Fu, Energy Fuels 38 (2024) 7614, https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.4c00203. doi: 10.1021/acs.energyfuels.4c00203

    12. [12]

      H. Kmentová, M. F. Edelmannová, Z. Baďura, R. Zbořil, L. Obalová, Š. Kment, K. Kočí, J. CO2 Util. 91 (2025) 103008, https://doi.org/10.1016/j.jcou.2024.103008. doi: 10.1016/j.jcou.2024.103008

    13. [13]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001. doi: 10.1016/j.jmst.2024.12.001

    14. [14]

      X. Zhang, J. Xu, H. Long, J. Yu, H. Yu, ACS Catal. 14 (2024) 18669, https://pubs.acs.org/doi/full/10.1021/acscatal.4c05674. doi: 10.1021/acscatal.4c05674

    15. [15]

      M. Sabir, M. Sayed, Z. Zeng, B. Cheng, W. Wang, C. Wang, J. Xu, S. Cao, Appl. Surf. Sci. 693 (2025) 162752, https://doi.org/10.1016/j.apsusc.2025.162752. doi: 10.1016/j.apsusc.2025.162752

    16. [16]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://pubs.rsc.org/en/content/articlehtml/2001/v6/d4cs01091d. https://pubs.rsc.org/en/content/articlehtml/2001/v6/d4cs01091d

    17. [17]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    18. [18]

      K. Wang, Q. Cheng, W. Hou, H. Guo, X. Wu, J. Wang, J. Li, Z. Liu, L. Wang, Adv. Funct. Mater. 34 (2024) 2309603, https://doi.org/10.1002/adfm.202309603. doi: 10.1002/adfm.202309603

    19. [19]

      X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5, https://doi.org/10.1016/S1872-2067(24)60223-8. doi: 10.1016/S1872-2067(24)60223-8

    20. [20]

      J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002. doi: 10.3866/PKU.WHXB202408002

    21. [21]

      Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021. doi: 10.3866/PKU.WHXB202407021

    22. [22]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    23. [23]

      M. Sayed, B. Zhu, P. Kuang, X. Liu, B. Cheng, A. A. Al-Ghamdi, S. Wageh, L. Zhang, J. Yu, Adv. Sustain. Syst. 6 (2022) 2100264, https://doi.org/10.1002/adsu.202100264. doi: 10.1002/adsu.202100264

    24. [24]

      Y. Li, B. Chen, L. Liu, B. Zhu, D. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202319432, https://doi.org/10.1002/anie.202319432. doi: 10.1002/anie.202319432

    25. [25]

      J. Li, C. Zhang, T. Bao, Y. Xi, L. Yuan, Y. Zou, Y. Bi, C. Liu, C. Yu, Adv. Mater. 37 (2025) 2416210, https://doi.org/10.1002/adma.202416210. doi: 10.1002/adma.202416210

    26. [26]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B: Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560. doi: 10.1016/j.apcatb.2024.124560

    27. [27]

      G. dos Santos, L. Tian, R. Gonçalves, H. García, L. Rossi, Adv. Funct. Mater. (2025) 2422055, https://doi.org/10.1002/adfm.202422055. doi: 10.1002/adfm.202422055

    28. [28]

      M. Malhotra, V. Soni, R. Kumar, Tarannum, P. Singh, S. Thakur, Q. V. Le, L. H. Nguyen, V.-H. Nguyen, P. Raizada, Chem. Eng. J. 506 (2025) 160238, https://doi.org/10.1016/j.cej.2025.160238. doi: 10.1016/j.cej.2025.160238

    29. [29]

      W. Wang, W. Hao, L. He, J. Qiao, N. Li, C. Chen, Y. Qin, Acta Phys. -Chim. Sin. (2025) 100116, https://doi.org/10.1016/j.actphy.2025.100116. doi: 10.1016/j.actphy.2025.100116

    30. [30]

      D. D. Hu, R. T. Guo, C. F. Li, J. S. Yan, W. G. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473. doi: 10.1016/j.seppur.2024.128473

    31. [31]

      M. Sun, Y. Ma, Y. Tan, J. Wang, G. Mi, J. Luo, C. Wang, X. Tong, X. Zhao, P. Chen, M. Huang, SusMat (2025) 70011, https://doi.org/10.1002/sus2.70011. doi: 10.1002/sus2.70011

    32. [32]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040. doi: 10.1016/j.jmst.2025.02.040

    33. [33]

      Y. Ren, Y. Li, G. Pan, N. Wang, Y. Xing, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052. doi: 10.1016/j.jmst.2023.06.052

    34. [34]

      K. Sharma, V. Hasija, M. Malhotra, P. K. Verma, A. A. P. Khan, S. Thakur, Q. V. Le, H. H. P. Quang, V.-H. Nguyen, P. Singh, et al., Int. J. Hydrogen Energy 52 (2024) 804, https://doi.org/10.1016/j.ijhydene.2023.09.033. doi: 10.1016/j.ijhydene.2023.09.033

    35. [35]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    36. [36]

      M. Gu, X. Xiang, B. Cheng, J. Yu, L. Zhang, Chem. Commun. 61 (2025) 6118, https://doi.org/10.1039/d5cc00433k. doi: 10.1039/d5cc00433k

    37. [37]

      J. Cai, X. Li, B. Su, B. Guo, X. Lin, W. Xing, X. F. Lu, S. Wang, J. Mater. Sci. Technol. 234 (2025) 82, https://doi.org/10.1016/j.jmst.2025.01.050. doi: 10.1016/j.jmst.2025.01.050

    38. [38]

      C. Li, X. Xu, A. Jia, Surfaces Interfaces 58 (2025) 105807, https://doi.org/10.1016/j.surfin.2025.105807. doi: 10.1016/j.surfin.2025.105807

    39. [39]

      K. Khan, A. M. Idris, H. Hassan, S. Haider, S. U. D. Khan, A. Miotello, I. Khan, Adv. Powder Mater. 4 (2025) 100284, https://doi.org/10.1016/j.apmate.2025.100284. doi: 10.1016/j.apmate.2025.100284

    40. [40]

      H. Li, B. Zhu, J. Sun, H. Gong, J. Yu, L. Zhang, J. Colloid Interface Sci. 654 (2024) 1010, https://doi.org/10.1016/j.jcis.2023.10.074. doi: 10.1016/j.jcis.2023.10.074

    41. [41]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005. doi: 10.1016/j.jmst.2025.03.005

    42. [42]

      C. E. McNamee, Y. Tsujii, M. Matsumoto, Langmuir 21 (2005) 11283, https://doi.org/10.1021/la0517890. doi: 10.1021/la0517890

    43. [43]

      Y. Huo, Z. Chang, X. Zhang, B. Dong, Waste Biomass Valorization 15 (2024) 6775, https://doi.org/10.1007/s12649-024-02584-3. doi: 10.1007/s12649-024-02584-3

    44. [44]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/ange.202218688. doi: 10.1002/ange.202218688

    45. [45]

      R. Kostić, N. Romčević, Phys. Status Solidi C 1 (2004) 2646, https://doi.org/10.1002/pssc.200405349. doi: 10.1002/pssc.200405349

    46. [46]

      L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447. doi: 10.1002/smll.202103447

    47. [47]

      Z. Yan, W. Wang, L. Du, J. Zhu, D. L. Phillips, J. Xu, Appl. Catal. B: Environ. 275 (2020) 119151, https://doi.org/10.1016/j.apcatb.2020.119151. doi: 10.1016/j.apcatb.2020.119151

    48. [48]

      C. Luo, Q. Long, B. Cheng, B. Zhu, L. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212026, https://doi.org/10.3866/PKU.WHXB202212026. doi: 10.3866/PKU.WHXB202212026

    49. [49]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028 doi: 10.1016/j.jmst.2023.06.028

    50. [50]

      B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988, https://doi.org/10.1016/j.jmat.2021.02.015. doi: 10.1016/j.jmat.2021.02.015

    51. [51]

      Y. Tang, H. Wang, C. Guo, L. Wang, T. Zhao, Z. Yang, S. Xiao, J. Liu, Y. Jiang, Y. Zhao, et al., J. Mater. Chem. A 12 (2024) 20958, https://pubs.rsc.org/en/content/articlehtml/2024/ta/d4ta02984d. https://pubs.rsc.org/en/content/articlehtml/2024/ta/d4ta02984d

    52. [52]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659 (2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173. doi: 10.1016/j.jcis.2023.12.173

    53. [53]

      Y. He, Z. Yang, J. Yu, D. Xu, C. Liu, Y. Pan, F. Xu, J. Mater. Chem. A 11 (2023) 14860, https://pubs.rsc.org/en/content/articlehtml/2023/ta/d3ta02951d. https://pubs.rsc.org/en/content/articlehtml/2023/ta/d3ta02951d

    54. [54]

      Y. Zeng, Z. Tang, X. Wu, A. Huang, X. Luo, G. Q. Xu, Y. Zhu, S. L. Wang, Appl. Catal. B: Environ. 306 (2022) 120919, https://doi.org/10.1016/j.apcatb.2021.120919. doi: 10.1016/j.apcatb.2021.120919

    55. [55]

      P. Liu, Y. L. Men, X. Y. Meng, C. Peng, Y. Zhao, Y. X. Pan, Angew. Chem. Int. Ed. 62 (2023) e202309443, https://doi.org/10.1002/anie.202309443. doi: 10.1002/anie.202309443

    56. [56]

      Z. Zhang, X. Wang, H. Tang, D. Li, J. Xu, Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8. doi: 10.1016/S1872-2067(23)64549-8

    57. [57]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5. doi: 10.1016/S1872-2067(24)60066-5

    58. [58]

      S. Chen, C. Li, Z. Hou, Int. J. Hydrogen Energy 44 (2019) 25473, https://doi.org/10.1016/j.ijhydene.2019.08.049. doi: 10.1016/j.ijhydene.2019.08.049

    59. [59]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867

    60. [60]

      R. Li, C.-W. Tung, B. Zhu, Y. Lin, F.-Z. Tian, T. Liu, H. M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176. doi: 10.1016/j.jcis.2024.06.176

    61. [61]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6. doi: 10.1038/s41467-021-25007-6

    62. [62]

      Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029. doi: 10.1016/j.jmst.2023.07.029

    63. [63]

      L. Yang, Z. Li, X. Wang, L. Li, Z. Chen, Chin. J. Catal. 59 (2024) 237, https://doi.org/10.1016/S1872-2067(23)64566-8. doi: 10.1016/S1872-2067(23)64566-8

    64. [64]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006. doi: 10.3866/PKU.WHXB202402006

    65. [65]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027. doi: 10.1016/j.jmst.2025.02.027

    66. [66]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064. https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    67. [67]

      J. Li, S. Jiang, S. Song, Chin. J. Catal. 59 (2024) 1, https://doi.org/10.1016/S1872-2067(23)64647-9. doi: 10.1016/S1872-2067(23)64647-9

    68. [68]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    69. [69]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002. doi: 10.3866/PKU.WHXB202407002

    70. [70]

      J. Zhang, G. Yang, B. He, B. Cheng, Y. Li, G. Liang, L. Wang, Chin. J. Catal. 43 (2022) 2530, https://doi.org/10.1016/S1872-2067(22)64108-1. doi: 10.1016/S1872-2067(22)64108-1

    71. [71]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    72. [72]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1. doi: 10.1016/S1872-2067(25)60706-1

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  126
  • HTML全文浏览量:  30
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-07-16
  • 接受日期:  2025-08-03
  • 修回日期:  2025-07-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章