W18O49/铝掺杂SrTiO3 S型异质结在LSPR效应辅助下实现全光谱太阳光驱动的光催化产氢

蒋金辉 孙佳琦 陈咏一 张磊 董鹏玉

引用本文: 蒋金辉, 孙佳琦, 陈咏一, 张磊, 董鹏玉. W18O49/铝掺杂SrTiO3 S型异质结在LSPR效应辅助下实现全光谱太阳光驱动的光催化产氢[J]. 物理化学学报, 2025, 41(11): 100145. doi: 10.1016/j.actphy.2025.100145 shu
Citation:  Jinhui Jiang, Jiaqi Sun, Yongyi Chen, Lei Zhang, Pengyu Dong. W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100145. doi: 10.1016/j.actphy.2025.100145 shu

W18O49/铝掺杂SrTiO3 S型异质结在LSPR效应辅助下实现全光谱太阳光驱动的光催化产氢

    通讯作者: 董鹏玉, dongpy11@gmail.com
  • 基金项目:

    国家自然科学基金 21403184

    中国江苏省高校自然科学研究基金 22KJA430008

摘要: 开发具有全光谱响应的高效光催化剂用于制氢具有重要意义。为了实现全光谱太阳光驱动的光催化,W18O49由于局域表面等离子体共振(LSPR)效应,在捕获可见光和近红外(NIR)光方面表现良好。然而,W18O49的光催化产氢活性非常低,需要进行改性。在本研究中,采用简单的原位溶剂热合成方法制备了Al掺杂的SrTiO3 (ASTO)/W18O49 S型异质结。得益于更强的载流子分离、更快的电子传输和强大的氧化还原能力,10% ASTO/W18O49 S型异质结表现出最高的全光谱太阳光驱动光催化产氢速率,分别是纯ASTO和W18O49的17.5倍和27.6倍。W18O49中丰富的氧空位产生的LSPR效应将光吸收范围扩展到NIR区域,显著提高了其对全光谱太阳光的利用效率。此外,由于W18O49的LSPR效应,它可以产生等离子体高能“热电子”,并使其转移到ASTO/W18O49异质结中ASTO的导带(CB),从而促进光生载流子的分离和迁移,并大大增加ASTO的CB上参与光催化产氢反应的光生电子和“热电子”的数量,与单一组分的W18O49和ASTO相比,表现出优异的光催化产氢性能。

English

    1. [1]

      Q. Wang, K. Domen, Chem. Rev. 120 (2020) 919, https://doi.org/10.1021/acs.chemrev.9b00201. doi: 10.1021/acs.chemrev.9b00201

    2. [2]

      Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, et al. Nat. Mater. 15 (2016) 611, https://doi.org/10.1038/nmat4589. doi: 10.1038/nmat4589

    3. [3]

      L. Mu, Y. Zhao, A. Li, S. Wang, Z. Wang, J. Yang, Y. Wang, T. Liu, R. Chen, J. Zhu, et al., Energy Environ. Sci. 9 (2016) 2463, https://doi.org/10.1039/C6EE00526H. doi: 10.1039/C6EE00526H

    4. [4]

      Y. Zhang, X. F. Wu, Z. H. Wang, Y. Peng, Y. W. Liu, S. Yang, C. H. Sun, X. X. Xu, X. Zhang, J. Kang, et al., J. Am. Chem. Soc. 146 (2024) 6618, https://doi.org/10.1021/jacs.3c12062. doi: 10.1021/jacs.3c12062

    5. [5]

      C. Wang, Q. Jia, X. Zhang, X. Chen, Y. Wang, G. Yu, D. Duan, Small 21 (2025) 2407963, https://doi.org/10.1002/smll.202407963. doi: 10.1002/smll.202407963

    6. [6]

      Y. L. Qin, F. Fang, Z. Z. Xie, H. W. Lin, K. Zhang, X. Yu, K. Chang, ACS Catal. 11 (2021) 11429, https://doi.org/10.1021/acscatal.1c02874. doi: 10.1021/acscatal.1c02874

    7. [7]

      Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, Joule 2 (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009. doi: 10.1016/j.joule.2017.12.009

    8. [8]

      T. Takata, J. Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9. doi: 10.1038/s41586-020-2278-9

    9. [9]

      R. H. Li, T. Takata, B. B. Zhang, C. Feng, Q. B. Wu, C. H. Cui, Z. M. Zhang, K. Domen, Y. B. Li, Angew. Chem. Int. Ed. 62 (2023) e202313537, https://doi.org/10.1002/anie.202313537. doi: 10.1002/anie.202313537

    10. [10]

      Z. Wei, J. Yan, W. Guo, W. Shangguan, Chin. J. Catal. 48 (2023) 279, https://doi.org/10.1016/S1872-2067(23)64414-6. doi: 10.1016/S1872-2067(23)64414-6

    11. [11]

      G. Dong, X. Huang, Y. Bi, Angew. Chem. Int. Ed. 61 (2022) e202204271, https://doi.org/10.1002/anie.202204271. doi: 10.1002/anie.202204271

    12. [12]

      N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, et al. J. Am. Chem. Soc. 140 (2018) 9434, https://doi.org/10.1021/jacs.8b02076. doi: 10.1021/jacs.8b02076

    13. [13]

      P. Bhavani, D. P. Kumar, M. Hussain, K.-J. Jeon, Y.-K. Park, Catal. Rev. 65 (2023) 1521, https://doi.org/10.1080/01614940.2022.2038472. doi: 10.1080/01614940.2022.2038472

    14. [14]

      Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, Adv. Mater. 29 (2017) 1606688, https://doi.org/10.1002/adma.201606688. doi: 10.1002/adma.201606688

    15. [15]

      J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Adv. Mater. 27 (2015) 1580, https://doi.org/10.1002/adma.201404792. doi: 10.1002/adma.201404792

    16. [16]

      Y. Liu, Z. Zhang, Y. Fang, B. Liu, J. Huang, F. Miao, Y. Bao, B. Dong, Appl. Catal. B: Environ. 252 (2019) 164, https://doi.org/10.1016/j.apcatb.2019.04.035. doi: 10.1016/j.apcatb.2019.04.035

    17. [17]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    18. [18]

      M. Sayed, J. Yu, G. Liu, M. Jaroniec, Chem. Rev. 122 (2022) 10484, https://doi.org/10.1021/acs.chemrev.1c00473. doi: 10.1021/acs.chemrev.1c00473

    19. [19]

      H. He, Z. Wang, K. Dai, S. Li, J. Zhang, Chin. J. Catal. 48 (2023) 267, https://doi.org/10.1016/S1872-2067(23)64420-1. doi: 10.1016/S1872-2067(23)64420-1

    20. [20]

      Q. Liu, X. He, J. Peng, X. Yu, H. Tang, J. Zhang, Chin. J. Catal. 42 (2021) 1478, https://doi.org/10.1016/S1872-2067(20)63753-6. doi: 10.1016/S1872-2067(20)63753-6

    21. [21]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600. doi: 10.1002/adma.202310600

    22. [22]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    23. [23]

      S. Li, Y. Wang, J. Wang, C. H. Kirk, H. Wang, J. Sun, Y. Liu, B. Liu, T. Zhang, S. Jiang, et al., Chem. Eng. J. 466 (2023) 143184, https://doi.org/10.1016/j.cej.2023.143184. doi: 10.1016/j.cej.2023.143184

    24. [24]

      J. Chen, P. Bai, S. Yuan, Y. He, Z. Niu, Y. Zhao, Y. Li, Chin. J. Catal. 67 (2024) 124, https://doi.org/10.1016/S1872-2067(24)60149-X. doi: 10.1016/S1872-2067(24)60149-X

    25. [25]

      J. Zhang, W. Yu, Y. Zhang, J. Zhu, Int. J. Hydrogen Energy 85 (2024) 165, https://doi.org/10.1016/j.ijhydene.2024.08.266. doi: 10.1016/j.ijhydene.2024.08.266

    26. [26]

      Y. Huang, K. Dai, J. Zhang, G. Dawson, Chin. J. Catal. 43 (2022) 2539, https://doi.org/10.1016/S1872-2067(21)64024-X. doi: 10.1016/S1872-2067(21)64024-X

    27. [27]

      Q. Liu, X. He, J. Tao, H. Tang, Z.-Q. Liu, ChemNanoMat 7 (2021) 44, https://doi.org/10.1002/cnma.202000536. doi: 10.1002/cnma.202000536

    28. [28]

      H.-Y. Liu, C.-G. Niu, H. Guo, D.-W. Huang, C. Liang, Y.-Y. Yang, N. Tang, X.-G. Zhang, J. Colloid Interf. Sci. 610 (2022) 953, https://doi.org/10.1016/j.jcis.2021.11.141. doi: 10.1016/j.jcis.2021.11.141

    29. [29]

      W. Xue, H. Sun, X. Hu, X. Bai, J. Fan, E. Liu, Chin. J. Catal. 43 (2022) 234, https://doi.org/10.1016/S1872-2067(20)63783-4. doi: 10.1016/S1872-2067(20)63783-4

    30. [30]

      Y. Yang, M. Qiu, Q. Qi, F. Chen, J. Chen, Y. Liu, L. Yang, ACS Appl. Nano Mater. 3 (2020) 10296, https://doi.org/10.1021/acsanm.0c02210. doi: 10.1021/acsanm.0c02210

    31. [31]

      D. Saadetnejad, R. Yıldırım, Int. J. Hydrogen Energy 43 (2018) 1116, https://doi.org/10.1016/j.ijhydene.2017.10.154. doi: 10.1016/j.ijhydene.2017.10.154

    32. [32]

      K. Gao, K. Li, J. Pan, C. Wang, L. Zhang, W. Wang, X. Xi, P. Dong, Appl. Surf. Sci. 644 (2024) 158794, https://doi.org/10.1016/j.apsusc.2023.158794. doi: 10.1016/j.apsusc.2023.158794

    33. [33]

      Y. Xia, Z. He, J. Su, Y. Liu, B. Tang, Nanoscale Res. Lett. 13 (2018) 148, https://doi.org/10.1186/s11671-018-2558-6. doi: 10.1186/s11671-018-2558-6

    34. [34]

      M. Duan, C. Hu, H. Li, Y. Chen, R. Chen, W. Gong, Z. Lu, N. Zhang, R. Long, L. Song, et al., JACS Au 2 (2022) 1160, https://doi.org/10.1021/jacsau.2c00146. doi: 10.1021/jacsau.2c00146

    35. [35]

      Y. Lu, X. Jia, Z. Ma, Y. Li, S. Yue, X. Liu, J. Zhang, Adv. Funct. Mater. 32 (2022) 2203638, https://doi.org/10.1002/adfm.202203638. doi: 10.1002/adfm.202203638

    36. [36]

      X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang, Q. Li, H. Bao, J. Zhou, S. Miao, N. Chen, et al., Adv. Mater. 32 (2020) 2003082, https://doi.org/10.1002/adma.202003082. doi: 10.1002/adma.202003082

    37. [37]

      P. Dong, K. Gao, L. Zhang, H. Huan, M.-H. Xie, X.-L. Yang, J. Zhang, Appl. Catal. B: Environ. Energy 357 (2024) 124297, https://doi.org/10.1016/j.apcatb.2024.124297. doi: 10.1016/j.apcatb.2024.124297

    38. [38]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970, https://doi.org/10.1126/science.aaa5760. doi: 10.1126/science.aaa5760

    39. [39]

      P. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi, J. Zhang, ACS Catal. 11 (2021) 13266, https://doi.org/10.1021/acscatal.1c03441. doi: 10.1021/acscatal.1c03441

    40. [40]

      Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, et al., Science. 358 (2017) 1192, https://doi.org/10.1126/science.aao5561. doi: 10.1126/science.aao5561

    41. [41]

      S. C. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, L. Z. Wang, Adv. Mater. 30 (2018) 1800486, https://doi.org/10.1002/adma.201800486. doi: 10.1002/adma.201800486

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    43. [43]

      H. Guo, J. Jiang, J. Liang, C. Wen, X. Xi, P. Dong, Chem. Eng. J. 504 (2025) 158649, https://doi.org/10.1016/j.cej.2024.158649. doi: 10.1016/j.cej.2024.158649

    44. [44]

      Y. Zhou, P. Dong, J. Liu, B. Zhang, B. Zhang, X. Xi, J. Zhang, Adv. Funct. Mater. (2025) 2500733, https://doi.org/10.1002/adfm.202500733. doi: 10.1002/adfm.202500733

    45. [45]

      S.-D. Wang, L.-Y. Huang, L.-J. Xue, Q. Kang, L.-L. Wen, K.-L. Lv, Appl. Catal. B: Environ. Energy 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366. doi: 10.1016/j.apcatb.2024.124366

    46. [46]

      J. Bai, R. Shen, Z. Jiang, P. Zhang, Y. Li, X. Li, Chin. J. Catal. 43 (2022) 359, https://doi.org/10.1016/S1872-2067(21)63883-4. doi: 10.1016/S1872-2067(21)63883-4

    47. [47]

      Y. Gu, Y. Li, H. Feng, Y. Han, Z. Li, Nano Res. 17 (2024) 4961, https://doi.org/10.1007/s12274-024-6501-0. doi: 10.1007/s12274-024-6501-0

    48. [48]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    49. [49]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  104
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-20
  • 接受日期:  2025-07-31
  • 修回日期:  2025-07-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章