Citation:
Yun Chen, Daijie Deng, Li Xu, Xingwang Zhu, Henan Li, Chengming Sun. Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100144.
doi:
10.1016/j.actphy.2025.100144
-
Rational design of photoelectric active materials for photoanodes in photocatalytic fuel cells is crucial for developing highly sensitive self-powered electrochemical sensors. Achieving directional migration and shortening transmission pathways of charge in photoanodes remains a fundamental challenge for enhancing the oxygen evolution reaction performance of photocatalytic fuel cells. Herein, tungsten species atomically dispersed on carbon-rich graphitic carbon nitride (W-CN-C) with the N–W–O covalent bond was designed as the photoanode for constructing a self-powered photocatalytic fuel cell sensing of heavy metal copper ions. W-CN-C was synthesized by self-assembly, exfoliation, and thermal-induced treatment process. The N–W–O covalent bonds by anchoring tungsten atoms on carbon-rich carbon nitride served as an interfacial charge transport channel, facilitating the separation and migration of charge carriers. The carbon content increase by forming a carbon-rich structure can enhance
p -electron delocalization in the W-CN-C, significantly broadening sunlight utilization range. The dispersed tungsten atoms provide effectively active sites, promoting the kinetics of the oxygen evolution reaction between the W-CN-C photoanode and electrolyte interface. The synergistic effects significantly enhance the visible light absorption ability and charge separation and transfer efficiency, improving the photoelectric conversion efficiency of W-CN-C photoanode, exhibiting superior oxygen evolution reaction performance, leading to the amplified open circuit potential in the photocatalytic fuel cell system based on excellent oxygen reduction reaction performance of the Pt@C electrocatalyst cathode. The specific identification probe for copper ions was effectively anchored on the W-CN-C photoanode to construct a self-powered photocatalytic fuel cell sensing platform for copper ions detection. The complex formed by copper ions and the probe hindered electron transport at the W-CN-C photoanode, altering the output detection signal of the photocatalytic fuel cell, thus demonstrating a broad detection range spanning five orders of magnitude (2.0 × 10−2–9.2 × 102 nmol L−1), a low limit of detection (7.0 pmol L−1), high selectivity against common interferents, and applicability for detecting heavy metal copper ions in the aquatic environment. Furthermore, the platform allowed for self-powered and portable determination of copper ions using a multimeter as a signal output device, achieving a detection range of 0.25–1.3 × 102 nmol L−1 and a limit of 84 pmol L−1. This work proposes an approach for developing a high-performance photoanode utilizing atomically dispersed metals to introduce covalent bonds as charge transfer channels, paving the way for highly sensitive self-powered electrochemical sensors for environmental monitoring. -
-
-
[1]
Y. He, K. Chen, M.K.H. Leung, Y. Zhang, L. Li, G. Li, J. Xuan, J. Li, Chem. Eng. J. 428(2022) 131074, https://doi.org/10.1016/j.cej.2021.131074.
-
[2]
M.H. Li, Y.B. Liu, L.M. Dong, C.S. Shen, F. Li, M.H. Huang, C.Y. Ma, B. Yang, X.Q. An, W. Sand, Sci. Total Environ. 668(2019) 966, https://doi.org/10.1016/j.scitotenv.2019.03.071.
-
[3]
Y. Chen, Y.F. Jia, X.W. Zhu, L. Xu, H.N. Li, H.M. Li, ACS Sens. 9(2024) 2429, https://doi.org/10.1021/acssensors.4c00108.
-
[4]
P.L. Yang, X.L. Hou, X. Gao, Y.X. Peng, Q.F. Li, Q.J. Niu, Q. Liu, ACS Sens. 9(2024) 577, https://doi.org/10.1021/acssensors.3c02198.
-
[5]
X.J. Du, W.H. Du, J. Sun, D. Jiang, Food Chem. 385(2022) 132731, https://doi.org/10.1016/j.foodchem.2022.132731.
-
[6]
R.S. Shen, L. Zhang, N. Li, Z.Z. Lou, T.Y. Ma, P. Zhang, Y.J. Li, X. Li, ACS Catal. 12(2022) 9994, https://doi.org/10.1021/acscatal.2c02416.
-
[7]
X. Wang, Y. Wang, M. Ma, X.W. Zhao, J.Y. Zhang, F.X. Zhang, Small 20(2024) 2311841, https://doi.org/10.1002/smll.202311841.
-
[8]
T. Yang, Z.W. Chen, X.Z. Yue, Q.C. Liu, S.S. Yi, Y.F. Zhu, Adv. Funct. Mater. 34(2024) 2313767, https://doi.org/10.1002/adfm.202313767.
-
[9]
B. Li, Z. Tian, L. Li, Y.H. Wang, Y. Si, H. Wan, J. Shi, G.F. Huang, W. Hu, A. Pan, W.Q. Huang, ACS Nano 17(2023) 3465, https://doi.org/10.1021/acsnano.2c09659
-
[10]
X.W. Zhu, Z.L.Wang, K. Zhong, Q.D. Li, P.H. Ding, Z.Y. Feng, J.M. Yang, Y.S. Du, Y.H. Song, Y.J. Hua, J.J. Yuan, Y.X. She, H.M. Li, H. Xu, Chem. Eng. J. 429(2022) 132204, https://doi.org/10.1016/j.cej.2021.132204.
-
[11]
M.Y. Wang, Z.Z. Zhang, Z.X. Chi, L.L. Lou, H. Li, H. Yu, T.Y. Ma, K. Yu, H. Wang, Adv. Funct. Mater. 33(2022) 2211565, https://doi.org/10.1002/adfm.202211565.
-
[12]
J.T. Dong, S.N. Ji, Y. Zhang, M.X. Ji, B. Wang, Y.J. Li, Z.G. Chen, J.X. Xia, H.M. Li, Acta Phys. -Chim. Sin. 39(2023) 2212011, https://doi.org/10.3866/PKU.WHXB202212011.
-
[13]
G.P. Liu, L. Wang, X. Chen, X.W. Zhu, B. Wang, X.Y. Xu, Z.R. Chen, W.S. Zhu, H.M. Li, J.X. Xia, Green Chem. Eng. 3(2022) 157, https://doi.org/10.1016/j.gce.2021.11.007.
-
[14]
G.P. Liu, L. Wang, B. Wang, X.W. Zhu, J.M. Yang, P.J. Liu, W.S. Zhu, Z.R. Chen, J.X. Xia, Chinese Chem. Lett. 34(2023) 107962, https://doi.org/10.1016/j.cclet.2022.107962.
-
[15]
J.T. Dong, Y. Zhang, L. Liu, X.M. Zhang, L.N. Li, G.P. Liu, H.M. Li, P.C. Yan, J.X. Xia, Chem. Commun. 61(2025) 7125, https://doi.org/10.1039/D4CC06531J.
-
[16]
Y.H. Li, Y.F. Wang, J.Y. Li, M.Y. Qi, M. Conte, Z.R. Tang, Y.J. Xu, ACS Catal. 14(2023) 657, https://doi.org/10.1021/acscatal.3c05511.
-
[17]
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76, https://doi.org/10.1038/NMAT2317.
-
[18]
Y. Chen, Y.H. Ge, Y.T. Yan, L. Xu, X.W. Zhu, P.C. Yan, P.H. Ding, H.M. Li, H.N. Li, Adv. Sci. 11(2024) 2408293, https://doi.org/10.1002/advs.202408293.
-
[19]
Y. Dai, W.G. Peng, Y. Ji, J. Wei, J.H. Che, Y.Q. Huang, W.H. Huang, W.M. Yang, W.Z. Xu, J. Food Sci. 89(2024) 8022, https://doi.org/10.1111/1750-3841.17398.
-
[20]
Q.J. Yue Wang, J.K. Shang, J. Xu,Y.X. Li, Acta Phys. -Chim. Sin. 32(2016) 1913, https://doi.org/10.3866/PKU.WHXB201605052.
-
[21]
J.S. Zhang, X.F. Chen , K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X.Z. Fu, M. Antonietti, X.C. Wang, Angew. Chem. 49(2010) 441, https://doi.org/10.1002/ange.200903886.
-
[22]
D. Cao, Z.R. Zhang, Y.H. Cui, R.H. Zhang, L.P. Zhang, J. Zeng, D.J. Cheng, Angew. Chem. Int. Ed. 62(2023) e202214259, https://doi.org/10.1002/anie.202214259.
-
[23]
J. Deng, Y.X. Zeng, E. Almatrafi, Y.T. Liang, Z.H. Wang, Z.H. Wang, B. Song, Y.N. Shang, W.J. Wang, C.Y. Zhou, G.M. Zeng, Coordin. Chem. Rev. 505(2024) 215693, https://doi.org/10.1016/j.ccr.2024.215693.
-
[24]
X.T. Feng, Z.A. Shang, R. Qin, Y.H. Han, Acta Phys. -Chim. Sin. 40(2024) 2305005, https://doi.org/10.3866/PKU.WHXB202305005.
-
[25]
D.M. Zhao, Y.Q. Wang, C.L. Dong, F.Q. Meng, Y.C. Huang, Q.H. Zhang, L. Gu, L. Liu, S.H. Shen, Nano-Micro Lett. 14(2022) 223, https://doi.org/10.1007/s40820-022-00962-x.
-
[26]
Q. Hong, H. Yang, Y.F. Fang, W. Li, C.X. Zhu, Z. Wang, S.C. Liang, X.W. Cao, Z.X. Zhou, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Nat. Commun. 14(2023) 2780, https://doi.org/10.1038/s41467-023-38459-9.
-
[27]
X.D. Xiao, Y.T. Gao, L.P. Zhang, J.C. Zhang, Q. Zhang, Q. Li, H.L. Bao, J. Zhou, S. Miao, N. Chen, J.Q. Wang, B.J. Jiang, C.G. Tian, H.G. Fu, Adv. Mater. 32(2020) 2003082, https://doi.org/10.1002/adma.202003082.
-
[28]
X.D. Xiao, L.P. Zhang, H.Y. Meng, B.J. Jiang, H.G. Fu, Solar RRL 5(2021) 2000609, https://doi.org/10.1002/solr.202000609.
-
[29]
Z.M. Zhai, H.H. Zhang, F.S. Niu, P.Y. Liu, J.J. Zhang, H.B. Lu, ACS Nano 16(2022) 21002, https://doi.org/10.1021/acsnano.2c08643.
-
[30]
Q. Li, L.M. Zhang, J.N. Liu, J. Zhou, Y.Q. Jiao, X.D. Xiao, C. Zhao, Y. Zhou, S. Ye, B.J. Jiang, J. Liu, Small 17(2021) e2006622, https://doi.org/10.1002/smll.202006622.
-
[31]
X.Y. Zhang, Y.Q. Liu, M. Ren, G. Yang, L. Qin, Y.H. Guo, J.Q. Meng, Chem. Eng. J. 433(2022) 134551, https://doi.org/10.1016/j.cej.2022.134551.
-
[32]
Y. Chen, D.J. Deng, P.C. Yan, Y.F. Jia, L. Xu, J.C. Qian, H.M. Li, H.N. Li, Sens. Actuators B Chem. 395(2023) 134501, https://doi.org/10.1016/j.snb.2023.134501.
-
[33]
S.R. Ke, X. Min, Y.G. Liu, R.Y. Mi, X.W. Wu, Z.H. Huang, M.H. Fang, Molecules 27(2022) 4751, https://doi.org/10.3390/molecules27154751.
-
[34]
D.J. Deng, W. Zhang, J.C. Qian, Y. Chen, C. Pu, H.M. Li, H.N. Li, L. Xu, Nano Energy 134(2025) 110579, https://doi.org/10.1016/j.nanoen.2024.110579.
-
[35]
Y.X. Xia, Y. Zhao, F.X. Ai, Y.H. Yi, T.T. Liu, H.Y. Lin, G.B. Zhu, J. Hazard. Mater. 425(2022) 127974, https://doi.org/10.1016/j.jhazmat.2021.127974.
-
[36]
N. Bagheri, V. Mazzaracchio, S. Cinti, N. Colozza, C. Di Natale, P.A. Netti, M. Saraji, S. Roggero, D. Moscone, F. Arduini, Anal. Chem. 93(2021) 5225, https://doi.org/10.1021/acs.analchem.0c05469.
-
[37]
P.C. Yan, J. Huang, G.Y. Wu, Y. Zhang, Z. Mo, K.Q. Xu, M. Ling, S.H. Dong, L. Xu, H.N. Li, J. Colloid Interface Sci. 679(2025) 653, https://doi.org/10.1016/j.jcis.2024.10.016.
-
[38]
Y.T. Xiao, G.H. Tian, W. Li, Y. Xie, B.J. Jiang, C.G. Tian, D.Y. Zhao, H.G. Fu, J. Am. Chem. Soc. 141(2019) 2508, https://doi.org/10.1021/jacs.8b12428.
-
[39]
Y. Wang, J.W. Zhang, W.X. Shi, G.L. Zhuang, Q.P. Zhao, J. Ren, P. Zhang, H.Q. Yin, T.B. Lu, Z.M. Zhang, Adv. Mater. 34(2022) e2204448, https://doi.org/10.1002/adma.202204448.
-
[40]
Z. Chen, J.X. Zhao, C.R. Cabrera, Z.F. Chen, Small Methods 3(2019) 1800368, https://doi.org/10.1002/smtd.201800368.
-
[41]
S.L. Chu, M.H. Yu, Y. Pan, S.X. Hu, B.Q. Liu, T. Lu, F.Y. Zeng, S.L. Luo, Small 19(2023) 2300619, https://doi.org/10.1002/smll.202300619.
-
[42]
Y. Gu, T.F. Xu, X.F. Chen, W.X. Chen, W.Y. Lu, Chem. Eng. J. 427(2022) 131973, https://doi.org/10.1016/j.cej.2021.131973.
-
[43]
K.X. Li, L.S. Yan, Z.X. Zeng, S.L. Luo, X.B. Luo, X.M. Liu, H.Q. Guo, Y.H. Guo, Appl. Catal. B Environ. 156-157(2014) 141, https://doi.org/10.1016/j.apcatb.2014.03.010.
-
[44]
J. Ding, L. Wang, Q.Q. Liu, Y.Y. Chai, X. Liu, W.L. Dai, Appl. Catal. B Environ. 176-177(2015) 91, https://doi.org/10.1016/j.apcatb.2015.03.028.
-
[45]
Y.J. Liang, X. Wu, X.Y. Liu, C.H. Li, S.W. Liu, Appl. Catal. B Environ. 304(2022) 120978, https://doi.org/10.1016/j.apcatb.2021.120978.
-
[46]
F. Zhang, J.H. Zhang, H.F. Wang, J.M. Li, H.H. Liu, X. Jin, X.Q. Wang, G.Q. Zhang, Chem. Eng. J. 424(2021) 130004, https://doi.org/10.1016/j.cej.2021.130004.
-
[47]
J.T. Dong, J.Z. Zhao, X.W. Yan, L.N. Li, G.P. Liu, M.X. Ji, B. Wang, Y.B. She, H.M. Li, J.X. Xia, Appl. Catal. B Environ. 351(2024) 123993, https://doi.org/10.1016/j.apcatb.2024.123993
-
[48]
Y. Li, Y.J. Chen, Q. Wang, Y.Y. Ye, J.S. Zeng, Z. Liu, Adv. Mater. 37(2025) 2414994, https://doi.org/10.1002/adma.202414994.
-
[49]
Y.L. Chen, M.F. Yu, G.C. Huang, Q.S. Chen, J.H. Bi, Small 18(2022) e2205388, https://doi.org/10.1002/smll.202205388.
-
[50]
S.C. Sun, G.Q. Shen, J.W. Jiang, W.B. Mi, X.L. Liu, L. Pan, X.W. Zhang, J.J. Zou, Adv. Energy Mater. 9(2019) 1901505,. https://doi.org/10.1002/aenm.201901505.
-
[51]
S.C. Song, N. Li, L.P. Bai, P.P. Gai, F. Li, Anal. Chem. 94(2022) 1654, https://doi.org/10.1021/acs.analchem.1c04135.
-
[52]
Y. Huang, J. Zheng, L. Wang, X.G. Duan, Y.S. Wang, Y. Xiang, G.X. Li, Biosens. Bioelectron. 127(2019) 45, https://doi.org/10.1016/j.bios.2018.12.016.
-
[53]
Y. Chen, L. Xu, M.Y. Yang, Y.F. Jia, Y.T. Yan, J.C. Qian, F. Chen, H.N. Li, Sens. Actuators B Chem. 353(2022) 131187, https://doi.org/10.1016/j.snb.2021.131187.
-
[54]
J. Wei, Q.Q. Hu, Y. Gao, N. Hao, J. Qian, K. Wang, Anal. Chem. 93(2021) 12690, https://doi.org/10.1021/acs.analchem.1c02555.
-
[55]
Y.X. Jin, Y. Luan, Z. Wu, W. Wen, X.H. Zhang, S.F. Wang, Anal. Chem. 93(2021) 13204, https://doi.org/10.1021/acs.analchem.1c02074.
-
[56]
X.L. Ouyang, L. Tang, C.Y. Feng, B. Peng, Y.N. Liu, X.Y. Ren, X. Zhu, J.S. Tan, X.X. Hu, Biosens. Bioelectron. 164(2020) 112328, https://doi.org/10.1016/j.bios.2020.112328.
-
[57]
L.M. Zhang, D. Li, S.H. Li, J.P. Li, X.H. Ma, M.Y. Wang, Microchem. J. 185(2023) 108285, https://doi.org/10.1016/j.microc.2022.108285.
-
[58]
Z.Y. Xu, Q.Y. Meng, Q. Cao, Y.S. Xiao, H. Liu, G. Han, S.H. Wei, J. Yan, L.D. Wu, Anal. Chem. 92(2020) 2201, https://doi.org/10.1021/acs.analchem.9b04900.
-
[59]
A. Nourbakhsh, M. Rahimnejad, M. Asghary, H. Younesi, Microchem. J. 175(2022) 107137, https://doi.org/10.1016/j.microc.2021.107137.
-
[60]
M.X. Lu, Y.J. Deng, Y. Luo, J.P. Lv, T.B. Li, J. Xu, S.W. Chen, J.Y. Wang, Anal. Chem. 91(2019) 888, https://doi.org/10.1021/acs.analchem.8b03764.
-
[61]
C.C. Zhai, L.Y. Miao, Y.B. Zhang, L.Q. Zhang, H. Li, S.X. Zhang, Chem. Eng. J. 431(2022) 134107, https://doi.org/10.1016/j.cej.2021.134107.
-
[1]
-
-
-
[1]
Jiangyuan Qiu , TaoYu , Junxin Chen , Wenxuan Li , Xiaoxuan Zhang , jinsheng Li , Rui Guo , Zaiyin Huang , Xuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-. doi: 10.1016/j.actphy.2025.100157
-
[2]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[3]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[4]
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
-
[5]
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
-
[6]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[7]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[8]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[9]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[10]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[11]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[12]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[13]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[14]
Rui LIU , Xinjun ZHOU , Tao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033
-
[15]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[16]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[17]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[18]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[19]
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
-
[20]
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(6)
- HTML views(1)
Login In
DownLoad: