促进电荷分离和增强O2吸附双重策略提升金修饰含硫空位CdIn2S4的光催化产H2O2性能

赵艳艳 吴珍 张勇 朱必成 张建军

引用本文: 赵艳艳, 吴珍, 张勇, 朱必成, 张建军. 促进电荷分离和增强O2吸附双重策略提升金修饰含硫空位CdIn2S4的光催化产H2O2性能[J]. 物理化学学报, 2025, 41(11): 100142. doi: 10.1016/j.actphy.2025.100142 shu
Citation:  Yanyan Zhao, Zhen Wu, Yong Zhang, Bicheng Zhu, Jianjun Zhang. Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100142. doi: 10.1016/j.actphy.2025.100142 shu

促进电荷分离和增强O2吸附双重策略提升金修饰含硫空位CdIn2S4的光催化产H2O2性能

    通讯作者: 赵艳艳, zhaoyanyan41@163.com; 张建军, zhangjianjun@cug.edu.cn
  • 基金项目:

    国家自然科学基金 22409128

    国家自然科学基金 22378103

摘要: 光催化氧还原反应(ORR)为过氧化氢(H2O2)的生产提供了一种温和且经济高效的方法。然而,催化剂的快速载流子复合和氧气吸附能力不足严重制约了其实际应用。针对上述问题,本研究提出了一种协同策略,首先通过制备富含S空位的CdIn2S4(Sv–CIS)促进电荷分离,随后负载纳米金颗粒(Au–Sv–CIS)以增强O2吸附能力。结果表明,优化后的Au–Sv–CIS在10%乙醇/水溶液中的H2O2产率显著提高至2542 μmol·h−1·g−1,分别是单体CIS和Sv–CIS的12.8倍和1.7倍。采用光致发光光谱、时间分辨光致发光光谱、瞬态光电流响应、电化学阻抗谱和飞秒瞬态吸收光谱等证明了Au–Sv–CIS具有显著改善的电荷分离效率。程序升温脱附实验和密度泛函理论计算揭示了Au–Sv–CIS增强的氧气吸附特性。本研究为实现高效的太阳能-化学能转化提供了新的设计思路。

English

    1. [1]

      B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal. B 323 (2023) 122200, https://doi.org/10.1016/j.apcatb.2022.122200. doi: 10.1016/j.apcatb.2022.122200

    2. [2]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    3. [3]

      H. Toan, D. Nguyen, P. Phan, N. Anh, P. Ly, M. Pham, S. Hur, T. Ung, D. Bich, M. Nguyen, et al., ACS Appl. Mater. Interfaces 16 (2024) 29421, https://doi.org/10.1021/acsami.4c04387. doi: 10.1021/acsami.4c04387

    4. [4]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970. doi: 10.1016/j.jmat.2024.100970

    5. [5]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978. doi: 10.1016/j.jmat.2024.100978

    6. [6]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974. doi: 10.1016/j.jmat.2024.100974

    7. [7]

      A. G. Fink, R. S. Delima, A. R. Rousseau, C. Hunt, N. E. LeSage, A. Huang, M. Stolar, C. P. Berlinguette, Nat. Commun. 15 (2024) 766, https://doi.org/10.1038/s41467-024-44741-1. doi: 10.1038/s41467-024-44741-1

    8. [8]

      E. Tacchi, G. Rossi, M. Natali, L. Ðorđević, A. Sartorel, Adv. Sustainable Syst. 9 (2025) 2400538, https://doi.org/10.1002/adsu.202400538. doi: 10.1002/adsu.202400538

    9. [9]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005. doi: 10.1016/j.jmst.2025.03.005

    10. [10]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6. doi: 10.1016/S1872-2067(24)60102-6

    11. [11]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027. doi: 10.1016/j.jmst.2025.02.027

    12. [12]

      X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9. doi: 10.1016/S1872-2067(24)60246-9

    13. [13]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2. doi: 10.1016/S1872-2067(23)64580-2

    14. [14]

      Y. Zhao, S. Zhang, Z. Wu, B. Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5. doi: 10.1016/S1872-2067(23)64645-5

    15. [15]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    16. [16]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002. doi: 10.1016/j.jmst.2022.09.002

    17. [17]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Y. Zhou, L. Xu, J. Wu, W. Zhu, T. He, H. Yang, H. Huang, T. Cheng, Y. Liu, Z. Kang, Energy Environ. Sci. 16 (2023) 3526, https://doi.org/10.1039/D3EE01788E doi: 10.1039/D3EE01788E

    19. [19]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. (2025) 2505088, https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    21. [21]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079. doi: 10.1002/smll.202409079

    22. [22]

      K. Zhang, M. Dan, J. Yang, F. Wu, L. Wang, H. Tang, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302964, https://doi.org/10.1002/adfm.202302964. doi: 10.1002/adfm.202302964

    23. [23]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0. doi: 10.1016/S1872-2067(23)64514-0

    24. [24]

      S. Sambyal, A. Sudhaik, S. Sonu, P. Raizada, V. Chaudhary, V. Nguyen, A. Khan, C. Hussain, P. Singh, Coordin. Chem. Rev. 535 (2025) 216653, https://doi.org/10.1016/j.ccr.2025.216653. doi: 10.1016/j.ccr.2025.216653

    25. [25]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    26. [26]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985. doi: 10.1016/j.jmat.2024.100985

    27. [27]

      Y. Wu, X. Deng, R. Cui, M. Song, X. Guo, X. Gong, J. He, P. Chen, J. Colloid Interface Sci. 656 (2024) 528, https://doi.org/10.1016/j.jcis.2023.11.118. doi: 10.1016/j.jcis.2023.11.118

    28. [28]

      Y. Li, Z. Pei, D. Luan, X. Lou, J. Am. Chem. Soc. 146 (2024) 3343, https://doi.org/10.1021/jacs.3c12465. doi: 10.1021/jacs.3c12465

    29. [29]

      K. Cao, H. Yang, S. Bai, Y. Xu, C. Yang, Y. Wu, M. Xie, T. Cheng, Q. Shao, X. Huang, ACS Catal. 11 (2021) 1106, https://doi.org/10.1021/acscatal.0c04348. doi: 10.1021/acscatal.0c04348

    30. [30]

      Z. Guo, C. Zhao, L. Meng, H. Fu, C. Wang, Z. Chen, Y. Zheng, Y. Li, J. Wang, C. Wang, Appl. Catal. B 377 (2025) 125507, https://doi.org/10.1016/j.apcatb.2025.125507. doi: 10.1016/j.apcatb.2025.125507

    31. [31]

      F. Li, X. Tang, Z. Hu, X. Li, F. Li, Y. Xie, Y. Jiang, C. Yu, Chin. J. Catal. 55 (2023) 253, https://doi.org/10.1016/S1872-2067(23)64555-3. doi: 10.1016/S1872-2067(23)64555-3

    32. [32]

      S. Liu, H. Ren, F. Tian, L. Geng, W. Cui, J. Chen, Y. Lin, M. Wu, Z. Li, Small 20 (2024) 2405683, https://doi.org/10.1002/smll.202405683. doi: 10.1002/smll.202405683

    33. [33]

      W. Fu, N. Li, M. Shi, G. Zhao, S. Zhang, Y. Wu, K. Zhao, F. Yin, J. Ma, Sep. Purif. Technol. 360 (2025) 131192, https://doi.org/10.1016/j.seppur.2024.131192. doi: 10.1016/j.seppur.2024.131192

    34. [34]

      X. Ruan, S. Zhao, M. Xu, D. Jiao, J. Leng, G. Fang, D. Meng, Z. Jiang, S. Jin, X. Cui, S. Ravi, Adv. Energy Mater. 14 (2024) 2401744, https://doi.org/10.1002/aenm.202401744. doi: 10.1002/aenm.202401744

    35. [35]

      H. Hou, X. Zeng, X. Zhang, Angew. Chem. Int. Ed. 59 (2020) 17356, https://doi.org/10.1002/anie.201911609. doi: 10.1002/anie.201911609

    36. [36]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007. doi: 10.3866/PKU.WHXB202312007

    37. [37]

      H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. -Chim. Sin. 40 (2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019. doi: 10.3866/PKU.WHXB202406019

    38. [38]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/PKU.WHXB202406021. doi: 10.3866/PKU.WHXB202406021

    39. [39]

      K. Kao, S. Huang, Y. Hsia, J. Huang, C. Mou, ACS Appl. Nano Mater. 7 (2023) 218, https://doi.org/10.1021/acsanm.3c04340. doi: 10.1021/acsanm.3c04340

    40. [40]

      D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2 (2012) 599, https://doi.org/10.1021/cs2006873. doi: 10.1021/cs2006873

    41. [41]

      Q. Xue, Z. Wang, S. Han, Y. Liu, X. Dou, Y. Li, H. Zhu, X. Yuan, J. Mater. Chem. A 10 (2022) 8371, https://doi.org/10.1039/D2TA00720G. doi: 10.1039/D2TA00720G

    42. [42]

      G. Han, J. Baek, Chem Catal. 3 (2023) 100617, https://doi.org/10.1016/j.checat.2023.100617. doi: 10.1016/j.checat.2023.100617

    43. [43]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7

    44. [44]

      L. Li, Z. Li, J. Li, J. Wang, H. Xu, H. Yu, Q. Lin, H. Huang, Y. Liu, Z. Kang, Small 21 (2025) 2410843, https://doi.org/10.1002/smll.202410843. doi: 10.1002/smll.202410843

    45. [45]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038. doi: 10.1002/anie.202425038

    46. [46]

      H. Zhang, Y. Gao, S. Meng, Z. Wang, P. Wang, Z. Wang, C. Qiu, S. Chen, B. Weng, Y. Zheng, Adv. Sci. 11 (2024) 2400099, https://doi.org/10.1002/advs.202400099. doi: 10.1002/advs.202400099

    47. [47]

      Y. Tan, Z. Chai, B. Wang, S. Tian, X. Deng, Z. Bai, L. Chen, S. Shen, J. Guo, M. Cai, et al., ACS Catal. 11 (2021) 2492, https://doi.org/10.1021/acscatal.0c05703. doi: 10.1021/acscatal.0c05703

    48. [48]

      Y. Zeng, S. Liu, G. Zhu, X. Yang, Q. Wang, H. Yu, J. Clean. Prod. 429 (2023) 139617, https://doi.org/10.1016/j.jclepro.2023.139617. doi: 10.1016/j.jclepro.2023.139617

    49. [49]

      C. Liu, W. Xiao, G. Yu, Q. Wang, J. Hu, C. Xu, X. Du, J. Xu, Q. Zhang, Z. Zou, J. Colloid Interf. Sci. 640 (2023) 851, https://doi.org/10.1016/j.jcis.2023.02.137. doi: 10.1016/j.jcis.2023.02.137

    50. [50]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0. doi: 10.1016/S1872-2067(24)60069-0

    51. [51]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    52. [52]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X. doi: 10.1016/S1872-2067(24)60077-X

    53. [53]

      J. Ye, B. Cheng, J. Yu, W. Ho, S. Wageh, A. A. Al-Ghamdi, Chem. Eng. J. 430 (2022) 132715, https://doi.org/10.1016/j.cej.2021.132715. doi: 10.1016/j.cej.2021.132715

    54. [54]

      A. Ates, Int. J. Hydrogen Energ. 46 (2021) 1842, https://doi.org/10.1016/j.ijhydene.2020.10.072. doi: 10.1016/j.ijhydene.2020.10.072

    55. [55]

      J. Ye, B. Zhu, B. Cheng, C. Jiang, S. Wageh, A. Al‐Ghamdi, J. Yu, Adv. Funct. Mater. 32 (2021) 2110423, https://doi.org/10.1002/adfm.202110423. doi: 10.1002/adfm.202110423

    56. [56]

      W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang, H. Zhao, Y. Zhu, Z. Liu, Nat. Commun. 15 (2024) 5316, https://doi.org/10.1038/s41467-024-49663-6. doi: 10.1038/s41467-024-49663-6

    57. [57]

      W. Li, B. Han, Y. Liu, J. Xu, H. He, G. Wang, J. Li, Y. Zhai, X. Zhu, Y. Zhu, Angew. Chem. Int. Ed. 64 (2025) e202421356, https://doi.org/10.1002/anie.202421356. doi: 10.1002/anie.202421356

    58. [58]

      H. Chen, S. Gao, G. Huang, Q. Chen, Y. Gao, J. Bi, Appl. Catal. B 343 (2024) 123545, https://doi.org/10.1016/j.apcatb.2023.123545. doi: 10.1016/j.apcatb.2023.123545

    59. [59]

      X. Zhang, J. Xu, H. Long, J. Yu, H. Yu, ACS Catal. 14 (2024) 18669, https://doi.org/10.1021/acscatal.4c05674. doi: 10.1021/acscatal.4c05674

    60. [60]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    61. [61]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    62. [62]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5. doi: 10.1038/s41467-024-45604-5

    63. [63]

      J. Zhu, S. Wageh, A. Al‐Ghamdi, Chin. J. Catal. 49 (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9. doi: 10.1016/S1872-2067(23)64438-9

    64. [64]

      M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117. doi: 10.1016/j.actphy.2025.100117

    65. [65]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121. doi: 10.1016/j.actphy.2025.100121

    66. [66]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229 (2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040. doi: 10.1016/j.jmst.2024.12.040

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  101
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-30
  • 接受日期:  2025-07-29
  • 修回日期:  2025-07-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章