Citation:
Huoshuai Huang, Zhidong Wei, Jiawei Yan, Jiasheng Chi, Qianxiang Su, Mingxia Chen, Zhi Jiang, Yangzhou Sun, Wenfeng Shangguan. Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1−xS solid solution[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100141.
doi:
10.1016/j.actphy.2025.100141
-
Solid solution strategy could improve the photocatalytic performance thermodynamically, yet the study focusing on the carrier dynamics of the solid solution catalysts was equally important. Herein, a series of ZnxCd1−xS solid solutions were successfully synthesized based on band structure regulation, and the carrier dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and DFT, which unveiled a variation of the mixed direct-to-indirect bandgap transition mechanism in ZnxCd1−xS solid solution. The indirect bandgap exhibited a lower photocarrier recombination rate and, more importantly, could also serve as a trapping center for photocarrier, thus promoting the efficiency of charge separation. Consequently, ZnxCd1−xS solid solutions achieved an approximately eleven-fold enhancement in the hydrogen evolution rate (1426.66 μmol h−1) relative to that of bare CdS (129.83 μmol h−1) under visible light (> 420 nm). This work proposed that the enhanced photocatalytic performance could originate from both thermodynamic and kinetic aspects simultaneously, and that the alteration of the photocarrier transition mechanism is one of the main factors affecting the kinetics.
-
-
-
[1]
A. Fujishima, K. Honda, Nature 238(1972) 37, https://doi.org/10.1038/238037a0.
-
[2]
V. Nguyen, B.S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C.C. Hu, P. Singh, P. Raizada, W.X. Peng, S.S. Lam, C.L. Xia, C.C. Nguyen, S.Y. Kim, Q.V. Le, Chem. Eng. J. 402(2020) 126184, https://doi.org/10.1016/j.cej.2020.126184.
-
[3]
M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. P. 30(2020) 3837, https://doi.org/10.1007/s10904-020-01611-9.
-
[4]
Z.D. Wei, J.Y. Liu, W.J. Fang, Z. Qin, Z. Jiang, W.F. Shangguan, Catal. Sci. Technol. 8(2018) 3774, https://doi.org/10.1039/C8CY00959G.
-
[5]
R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y.X. Weng, Z.S. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30(2018) 1705941, https://doi.org/10.1002/adma.201705941.
-
[6]
Z.D. Wei, Y.C. Zhang, H.S. Huang, J.Y. Liu, Y.R. Zhang, X.L, Li, W.F. Shangguan, Z. Huang, Inorg. Chem. 64(2025) 12277, https://doi.org/10.1021/acs.inorgchem.5c01686.
-
[7]
X.F. Ning, G.X. Lu, Nanoscale 12(2020) 1213, https://doi.org/10.1039/c9nr09183a.
-
[8]
Z.D. Wei, J.W. Yan, Y.C. Zhang, J.S. Chi, H.S. Huang, J.Y. Liu, J.L. Mi, L.L. Ma, W.J. Fang, W.F. Shangguan, Z. Huang, Appl. Catal. B-Environ. Energy 378(2025) 125569, https://doi.org/10.1016/j.apcatb.2025.125569.
-
[9]
B.D. Liu, J. Li, W.J. Yang, X.L. Zhang, X. Jiang, Y. Bando, Small 13(2017) 1701998, https://doi.org/10.1002/smll.201701998.
-
[10]
H. Liu, J. Yuan, Z. Jiang, W.F. Shangguan, H. Einaga, Y. Teraoka, J. Mater. Chem. 21(2011) 16535, https://doi.org/10.1039/C1JM11809A.
-
[11]
F. Dionigi, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A.K. Xiong, K. Maeda, K. Domen, I. Chorkendorff, J. Catal. 292(2012) 26, https://doi.org/10.1016/j.jcat.2012.03.021.
-
[12]
K.W. Liu, B.Y. Zhang, J.F. Zhang, W.R. Lin, J.M. Wang, Y. Xu, Y. Xiang, T. Hisatomi, K. Domen, G.J. Ma, ACS Catal. 12(2022) 14637, https://doi.org/10.1021/acscatal.2c04361.
-
[13]
T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, J. Am. Chem. Soc. 134(2012) 8254, https://doi.org/10.1021/ja302479f.
-
[14]
W.J. Fang, J.Y. Liu, D. Yang, Z.D. Wei, Z. Jiang, W.F. Shangguan, ACS Sustain. Chem. Eng. 5(2017) 6578, https://doi.org/10.1021/acssuschemeng.7b00808.
-
[15]
Z.D. Wei, Y. Zhu, W.Q. Guo, J.Y. Liu, W.J. Fang, Z. Jiang, W.F. Shangguan, Appl. Catal. B-Environ. 266(2020) 118664, https://doi.org/10.1016/j.apcatb.2020.118664.
-
[16]
W.Q. Guo, P.F. Yu, H.L. Luo, J.S. Chi, J. Zhi, X.S. Liu, W. Wen, W.F. Shangguan, J. Catal. 406(2022) 193, https://doi.org/10.1016/j.jcat.2022.01.011.
-
[17]
M.C. Liu, Y.B. Chen, J.Z. Su, J.W. Shi, X.X. Wang, L.J. Guo, Nat. Energy 1(2016) 16151, https://doi.org/10.1038/NENERGY.2016.151.
-
[18]
C.W. Wang, T. Guo, G.J. Hu, J.X. Liu, Y. Zhu, Q.J. Guo, J. Mater. Res. Technol. 32(2024) 2433, https://doi.org/10.1016/j.jmrt.2024.08.111.
-
[19]
Y. Zhao, W.H. Xue, W.F. Sun, H.Y. Chen, X. Li, X.T. Zu, S. Li, X. Xiang, Int. J. Hydrogen Energ. 48(2023) 31161, https://doi.org/10.1016/j.ijhydene.2023.04.215.
-
[20]
M. Dan, A. Prakash, Q. Cai, J.L. Xiang, Y.H. Ye, Y. Li, S. Yu, Y.H. Lin, Y. Zhou, Sol. RRL 3(2019) 1800237, https://doi.org/10.1002/solr.201800237.
-
[21]
T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta. Phys.-Chim. Sin. 39(2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009.
-
[22]
H. Li, S.R. Tao, S.J. Wan, G.G. Qiu, Q. Long, J.G. Yu, S.W. Cao, Chin. J. Catal. 46(2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3.
-
[23]
T.Y. Huang, Z. Yang, S.Y. Yang, Z.H. Dai, Y.J. Liu, J.H. Liao, G.Y. Zhong, Z.J. Xie, Y.P. Fang, S.S. Zhang, J. Mater. Sci. Technol. 171(2024) 1, https://doi.org/10.1016/j.jmst.2023.07.010.
-
[24]
J.Y. He, W.S. Zhang, Z.G. Liu, Z.M. Wang, K.Q. Lu, K. Yang, J. Liaocheng Univ. Nat. Sci. Ed. 38(2025) 421, https://doi.org/10.19728/j.issn1672-6634.2024100015.
-
[25]
C. Wu, K.L. Lv, X. Li, Q. Li, Chin. J. Catal. 54(2023) 137, https://doi.org/10.1016/S1872-2067(23)64542-5.
-
[26]
M. Li, J.Z. Wang, Z.L. Jin, Rare Metals 43(2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.
-
[27]
D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7(2024) e12774, https://doi.org/10.1002/eem2.12774.
-
[28]
P. Su, J.H. Yu, P.X. Deng, D.L. Qu, T.T Liang, H.H. Zhao, N. Yang, D.F. Zhang, B. Ge, X.P. Pu, J. Liaocheng Univ. Nat. Sci. Ed. 37(2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012.
-
[29]
X.Y. Cai, J.H. Du, G.M. Zhong, Y.M. Zhang, L. Mao, Z.Z. Lou, Acta. Phys.-Chim. Sin. 39(2023) 2302017, https://doi.org/10.3866/Pku.Whxb202302017.
-
[30]
W. Deng, X.Q. Hao, J.Q. Yang, Z.L. Jin, Appl. Catal. B-Environ. Energy 360(2025) 124551, https://doi.org/10.1016/j.apcatb.2024.124551.
-
[31]
Z.H. Xue, D.Y. Luan, H.B. Zhang, X.W. Lou, Joule 6(2022) 92, https://doi.org/10.1016/j.joule.2021.12.011.
-
[32]
J.S. Chi, Z.D. Wei, W.Q. Guo, W.J. Fang, J.W. Yan, H.S. Huang, Y. Zhang, H.L. Luo, J.C. Wang, J.Y. Liu, Z. Jiang, W.F. Shangguan, ACS Catal. 15(2025) 11293, https://doi.org/10.1021/acscatal.5c02714.
-
[33]
J.N. Ma, T.J. Miao, J.W. Tang, Chem. Soc. Rev. 51(2022) 5777, https://doi.org/10.1039/D1CS01164B.
-
[34]
L. M., Z.X. X., L. B., H.B. B., Z.Z. K., ACS Nano 18(2024) 30247, https://doi.org/10.1021/acsnano.4c10702.
-
[35]
B. Li, M. Lv, Y.J. Zhang, X.Q. Gong, Z.Z. Lou, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, B.B. Huang, Z.K. Zheng, ACS Nano 18(2024) 25522, https://doi.org/10.1021/acsnano.4c05351.
-
[36]
T. Takata, J.Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581(2020) 411, https://doi.org/10.1038/s41586-020-2278-9.
-
[37]
M.Y. Wang, P. Wang, X.F. Wang, F. Chen, H.G. Yu, J. Mater. Sci. Technol. 174(2024) 168, https://doi.org/10.1016/j.jmst.2023.06.065.
-
[38]
J.J. Fang, C.Y. Zhu, L.C. Fang, Y.K. Chen, H.L. Hu, Y. Wu, Q.Q. Chen, J.J. Mao, Sci. China. Mater. 67(2024) 2949, https://doi.org/10.1007/s40843-024-2995-0.
-
[39]
J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta. Phys.-Chim. Sin. 40(2024) 2305043, https://doi.org/10.3866/PKU.WHXB202305043.
-
[40]
C.H. Fu, D. Li, J.W. Zhang, W. Guo, H. Yang, B. Zhao, Z.M. Chen, X. Fu, Z.Q. Liang, L. Jiang, Chem. Res. Chin. Univ. 39(2023) 891, https://doi.org/10.1007/s40242-023-3182-2.
-
[41]
E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2(2020) 012024, https://doi.org/10.1103/PhysRevResearch.2.012024.
-
[42]
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105(2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805.
-
[43]
H. Shin, D.S. Hong, H. Cho, H. Jang, G.Y. Kim, K.M. Song, M.J. Choi, D. Kim, Y.S. Jung, Nat. Commun. 15(2024) 8125, https://doi.org/10.1038/s41467-024-52535-8.
-
[44]
S. Halder, R. Maity, Ceram. Int. 49(2023) 8634, https://doi.org/10.1016/j.ceramint.2022.12.096.
-
[45]
X. Wang, H.T. Huang, M.T. Zhao, W.C. Hao, Z.S. Li, Z.G. Zou, J. Phys. Chem. C 121(2017) 6864, https://doi.org/10.1021/acs.jpcc.7b01279.
-
[46]
E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulovic, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16(2017) 115, https://doi.org/10.1038/nmat4765.
-
[47]
M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energ. Environ. Sci. 4(2011) 1372, https://doi.org/10.1039/C0EE00604A.
-
[48]
S. Zhang, Q.Y. Chen, Y.H. Wang, L.J. Guo, Int. J. Hydrogen Energ. 37(2012) 13030, https://doi.org/10.1016/j.ijhydene.2012.05.060.
-
[49]
J. Jiang, G.H. Wang, Y.C. Shao, J. Wang, S. Zhou, Y.R. Su, Chin. J. Catal. 43(2022) 329, https://doi.org/10.1016/S1872-2067(21)63889-5.
-
[50]
J.Y. Shi, H.J. Yan, X.L. Wang, Z.C. Feng, Z.B. Lei, C. Li, Solid. State. Commun. 146(2008) 249, https://doi.org/10.1016/j.ssc.2008.02.016.
-
[51]
X.Y. Fan, H. Liu, E. Anang, D.J. Ren, Materials 14(2021) 4066, https://doi.org/10.3390/ma14154066.
-
[52]
Y. Tang, Z.F. Xu, Y. Sun, C.Y. Wang, Y.C. Guo, W.C. Hao, X. Tan, J.H. Ye, T. Yu, Energ. Environ. Sci. 17(2024) 7882, https://doi.org/10.1039/D4EE03092C.
-
[53]
J.H. Yang, H.J. Yan, X.L. Wang, F.Y. Wen, Z.J. Wang, D.Y. Fan, J.Y. Shi, C. Li, J. Catal. 290(2012) 151, https://doi.org/10.1016/j.jcat.2012.03.008.
-
[54]
P.B. Lin, Y. Yang, W. Chen, H.Y. Gao, X.P. Chen, J. Yuan, W.F. Shangguan, Acta. Phys.-Chim. Sin. 29(2013) 1313, https://doi.org/10.3866/PKU.WHXB201303141.
-
[55]
J.J. Liu, J. Phys. Chem. C 119(2015) 28417, https://doi.org/10.1021/acs.jpcc.5b09092.
-
[56]
T.Y. Wang, L.P. Xu, J.W. Cui, J.H. Wu, Z.F. Li, Y.C. Wu, B.N. Tian, Y. Tian, Nano. Lett. 22(2022) 6664, https://doi.org/10.1021/acs.nanolett.2c02005.
-
[57]
B. Yang, X. Mao, F. Hong, W.W. Meng, Y.X. Tang, X.S. Xia, S.Q. Yang, W.Q. Deng, K.L. Han, J. Am. Chem. Soc. 140(2018) 17001, https://doi.org/10.1021/jacs.8b07424.
-
[58]
C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Edit. 61(2022) e202212045, https://doi.org/10.1002/ange.202212045.
-
[59]
N. Li, X.P. Zhai, B. Ma, H.J. Zhang, M.J. Xiao, Q. Wang, H.L. Zhang, J. Mater. Chem. A 11(2023) 4020, https://doi.org/10.1039/d2ta09777j.
-
[60]
C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3(2018) 862, https://doi.org/10.1038/s41560-018-0229-6.
-
[61]
D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. 10(2019) 5353, https://doi.org/10.1039/C9SC00217K.
-
[62]
C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Edit. 62(2023) e202218688, https://doi.org/10.1002/anie.202218688.
-
[1]
-
-
-
[1]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
-
[2]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
-
[3]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[4]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
-
[5]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[6]
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131
-
[7]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[8]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[9]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
-
[10]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[11]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[12]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[15]
Yuqiong Li , Bing Lan , Bin Guan , Chunlong Dai , Fan Zhang , Zifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031
-
[16]
Ruyan Liu , Zhenrui Ni , Olim Ruzimuradov , Khayit Turayev , Tao Liu , Luo Yu , Panyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159
-
[17]
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
-
[18]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[19]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[20]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(9)
- HTML views(2)
Login In
DownLoad: