Citation: Huoshuai Huang,  Zhidong Wei,  Jiawei Yan,  Jiasheng Chi,  Qianxiang Su,  Mingxia Chen,  Zhi Jiang,  Yangzhou Sun,  Wenfeng Shangguan. Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1xS solid solution[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100141. doi: 10.1016/j.actphy.2025.100141 shu

Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1xS solid solution

  • Corresponding author: Zhidong Wei,  Wenfeng Shangguan, 
  • Received Date: 16 June 2025
    Revised Date: 24 July 2025

  • Solid solution strategy could improve the photocatalytic performance thermodynamically, yet the study focusing on the carrier dynamics of the solid solution catalysts was equally important. Herein, a series of ZnxCd1xS solid solutions were successfully synthesized based on band structure regulation, and the carrier dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and DFT, which unveiled a variation of the mixed direct-to-indirect bandgap transition mechanism in ZnxCd1xS solid solution. The indirect bandgap exhibited a lower photocarrier recombination rate and, more importantly, could also serve as a trapping center for photocarrier, thus promoting the efficiency of charge separation. Consequently, ZnxCd1xS solid solutions achieved an approximately eleven-fold enhancement in the hydrogen evolution rate (1426.66 μmol h−1) relative to that of bare CdS (129.83 μmol h−1) under visible light (> 420 nm). This work proposed that the enhanced photocatalytic performance could originate from both thermodynamic and kinetic aspects simultaneously, and that the alteration of the photocarrier transition mechanism is one of the main factors affecting the kinetics.
  • 加载中
    1. [1]

      A. Fujishima, K. Honda, Nature 238(1972) 37, https://doi.org/10.1038/238037a0.

    2. [2]

      V. Nguyen, B.S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C.C. Hu, P. Singh, P. Raizada, W.X. Peng, S.S. Lam, C.L. Xia, C.C. Nguyen, S.Y. Kim, Q.V. Le, Chem. Eng. J. 402(2020) 126184, https://doi.org/10.1016/j.cej.2020.126184.

    3. [3]

      M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. P. 30(2020) 3837, https://doi.org/10.1007/s10904-020-01611-9.

    4. [4]

      Z.D. Wei, J.Y. Liu, W.J. Fang, Z. Qin, Z. Jiang, W.F. Shangguan, Catal. Sci. Technol. 8(2018) 3774, https://doi.org/10.1039/C8CY00959G.

    5. [5]

      R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y.X. Weng, Z.S. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30(2018) 1705941, https://doi.org/10.1002/adma.201705941.

    6. [6]

      Z.D. Wei, Y.C. Zhang, H.S. Huang, J.Y. Liu, Y.R. Zhang, X.L, Li, W.F. Shangguan, Z. Huang, Inorg. Chem. 64(2025) 12277, https://doi.org/10.1021/acs.inorgchem.5c01686.

    7. [7]

      X.F. Ning, G.X. Lu, Nanoscale 12(2020) 1213, https://doi.org/10.1039/c9nr09183a.

    8. [8]

      Z.D. Wei, J.W. Yan, Y.C. Zhang, J.S. Chi, H.S. Huang, J.Y. Liu, J.L. Mi, L.L. Ma, W.J. Fang, W.F. Shangguan, Z. Huang, Appl. Catal. B-Environ. Energy 378(2025) 125569, https://doi.org/10.1016/j.apcatb.2025.125569.

    9. [9]

      B.D. Liu, J. Li, W.J. Yang, X.L. Zhang, X. Jiang, Y. Bando, Small 13(2017) 1701998, https://doi.org/10.1002/smll.201701998.

    10. [10]

      H. Liu, J. Yuan, Z. Jiang, W.F. Shangguan, H. Einaga, Y. Teraoka, J. Mater. Chem. 21(2011) 16535, https://doi.org/10.1039/C1JM11809A.

    11. [11]

      F. Dionigi, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A.K. Xiong, K. Maeda, K. Domen, I. Chorkendorff, J. Catal. 292(2012) 26, https://doi.org/10.1016/j.jcat.2012.03.021.

    12. [12]

      K.W. Liu, B.Y. Zhang, J.F. Zhang, W.R. Lin, J.M. Wang, Y. Xu, Y. Xiang, T. Hisatomi, K. Domen, G.J. Ma, ACS Catal. 12(2022) 14637, https://doi.org/10.1021/acscatal.2c04361.

    13. [13]

      T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, J. Am. Chem. Soc. 134(2012) 8254, https://doi.org/10.1021/ja302479f.

    14. [14]

      W.J. Fang, J.Y. Liu, D. Yang, Z.D. Wei, Z. Jiang, W.F. Shangguan, ACS Sustain. Chem. Eng. 5(2017) 6578, https://doi.org/10.1021/acssuschemeng.7b00808.

    15. [15]

      Z.D. Wei, Y. Zhu, W.Q. Guo, J.Y. Liu, W.J. Fang, Z. Jiang, W.F. Shangguan, Appl. Catal. B-Environ. 266(2020) 118664, https://doi.org/10.1016/j.apcatb.2020.118664.

    16. [16]

      W.Q. Guo, P.F. Yu, H.L. Luo, J.S. Chi, J. Zhi, X.S. Liu, W. Wen, W.F. Shangguan, J. Catal. 406(2022) 193, https://doi.org/10.1016/j.jcat.2022.01.011.

    17. [17]

      M.C. Liu, Y.B. Chen, J.Z. Su, J.W. Shi, X.X. Wang, L.J. Guo, Nat. Energy 1(2016) 16151, https://doi.org/10.1038/NENERGY.2016.151.

    18. [18]

      C.W. Wang, T. Guo, G.J. Hu, J.X. Liu, Y. Zhu, Q.J. Guo, J. Mater. Res. Technol. 32(2024) 2433, https://doi.org/10.1016/j.jmrt.2024.08.111.

    19. [19]

      Y. Zhao, W.H. Xue, W.F. Sun, H.Y. Chen, X. Li, X.T. Zu, S. Li, X. Xiang, Int. J. Hydrogen Energ. 48(2023) 31161, https://doi.org/10.1016/j.ijhydene.2023.04.215.

    20. [20]

      M. Dan, A. Prakash, Q. Cai, J.L. Xiang, Y.H. Ye, Y. Li, S. Yu, Y.H. Lin, Y. Zhou, Sol. RRL 3(2019) 1800237, https://doi.org/10.1002/solr.201800237.

    21. [21]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta. Phys.-Chim. Sin. 39(2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009.

    22. [22]

      H. Li, S.R. Tao, S.J. Wan, G.G. Qiu, Q. Long, J.G. Yu, S.W. Cao, Chin. J. Catal. 46(2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3.

    23. [23]

      T.Y. Huang, Z. Yang, S.Y. Yang, Z.H. Dai, Y.J. Liu, J.H. Liao, G.Y. Zhong, Z.J. Xie, Y.P. Fang, S.S. Zhang, J. Mater. Sci. Technol. 171(2024) 1, https://doi.org/10.1016/j.jmst.2023.07.010.

    24. [24]

      J.Y. He, W.S. Zhang, Z.G. Liu, Z.M. Wang, K.Q. Lu, K. Yang, J. Liaocheng Univ. Nat. Sci. Ed. 38(2025) 421, https://doi.org/10.19728/j.issn1672-6634.2024100015.

    25. [25]

      C. Wu, K.L. Lv, X. Li, Q. Li, Chin. J. Catal. 54(2023) 137, https://doi.org/10.1016/S1872-2067(23)64542-5.

    26. [26]

      M. Li, J.Z. Wang, Z.L. Jin, Rare Metals 43(2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.

    27. [27]

      D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7(2024) e12774, https://doi.org/10.1002/eem2.12774.

    28. [28]

      P. Su, J.H. Yu, P.X. Deng, D.L. Qu, T.T Liang, H.H. Zhao, N. Yang, D.F. Zhang, B. Ge, X.P. Pu, J. Liaocheng Univ. Nat. Sci. Ed. 37(2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012.

    29. [29]

      X.Y. Cai, J.H. Du, G.M. Zhong, Y.M. Zhang, L. Mao, Z.Z. Lou, Acta. Phys.-Chim. Sin. 39(2023) 2302017, https://doi.org/10.3866/Pku.Whxb202302017.

    30. [30]

      W. Deng, X.Q. Hao, J.Q. Yang, Z.L. Jin, Appl. Catal. B-Environ. Energy 360(2025) 124551, https://doi.org/10.1016/j.apcatb.2024.124551.

    31. [31]

      Z.H. Xue, D.Y. Luan, H.B. Zhang, X.W. Lou, Joule 6(2022) 92, https://doi.org/10.1016/j.joule.2021.12.011.

    32. [32]

      J.S. Chi, Z.D. Wei, W.Q. Guo, W.J. Fang, J.W. Yan, H.S. Huang, Y. Zhang, H.L. Luo, J.C. Wang, J.Y. Liu, Z. Jiang, W.F. Shangguan, ACS Catal. 15(2025) 11293, https://doi.org/10.1021/acscatal.5c02714.

    33. [33]

      J.N. Ma, T.J. Miao, J.W. Tang, Chem. Soc. Rev. 51(2022) 5777, https://doi.org/10.1039/D1CS01164B.

    34. [34]

      L. M., Z.X. X., L. B., H.B. B., Z.Z. K., ACS Nano 18(2024) 30247, https://doi.org/10.1021/acsnano.4c10702.

    35. [35]

      B. Li, M. Lv, Y.J. Zhang, X.Q. Gong, Z.Z. Lou, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, B.B. Huang, Z.K. Zheng, ACS Nano 18(2024) 25522, https://doi.org/10.1021/acsnano.4c05351.

    36. [36]

      T. Takata, J.Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581(2020) 411, https://doi.org/10.1038/s41586-020-2278-9.

    37. [37]

      M.Y. Wang, P. Wang, X.F. Wang, F. Chen, H.G. Yu, J. Mater. Sci. Technol. 174(2024) 168, https://doi.org/10.1016/j.jmst.2023.06.065.

    38. [38]

      J.J. Fang, C.Y. Zhu, L.C. Fang, Y.K. Chen, H.L. Hu, Y. Wu, Q.Q. Chen, J.J. Mao, Sci. China. Mater. 67(2024) 2949, https://doi.org/10.1007/s40843-024-2995-0.

    39. [39]

      J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta. Phys.-Chim. Sin. 40(2024) 2305043, https://doi.org/10.3866/PKU.WHXB202305043.

    40. [40]

      C.H. Fu, D. Li, J.W. Zhang, W. Guo, H. Yang, B. Zhao, Z.M. Chen, X. Fu, Z.Q. Liang, L. Jiang, Chem. Res. Chin. Univ. 39(2023) 891, https://doi.org/10.1007/s40242-023-3182-2.

    41. [41]

      E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2(2020) 012024, https://doi.org/10.1103/PhysRevResearch.2.012024.

    42. [42]

      K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105(2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805.

    43. [43]

      H. Shin, D.S. Hong, H. Cho, H. Jang, G.Y. Kim, K.M. Song, M.J. Choi, D. Kim, Y.S. Jung, Nat. Commun. 15(2024) 8125, https://doi.org/10.1038/s41467-024-52535-8.

    44. [44]

      S. Halder, R. Maity, Ceram. Int. 49(2023) 8634, https://doi.org/10.1016/j.ceramint.2022.12.096.

    45. [45]

      X. Wang, H.T. Huang, M.T. Zhao, W.C. Hao, Z.S. Li, Z.G. Zou, J. Phys. Chem. C 121(2017) 6864, https://doi.org/10.1021/acs.jpcc.7b01279.

    46. [46]

      E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulovic, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16(2017) 115, https://doi.org/10.1038/nmat4765.

    47. [47]

      M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energ. Environ. Sci. 4(2011) 1372, https://doi.org/10.1039/C0EE00604A.

    48. [48]

      S. Zhang, Q.Y. Chen, Y.H. Wang, L.J. Guo, Int. J. Hydrogen Energ. 37(2012) 13030, https://doi.org/10.1016/j.ijhydene.2012.05.060.

    49. [49]

      J. Jiang, G.H. Wang, Y.C. Shao, J. Wang, S. Zhou, Y.R. Su, Chin. J. Catal. 43(2022) 329, https://doi.org/10.1016/S1872-2067(21)63889-5.

    50. [50]

      J.Y. Shi, H.J. Yan, X.L. Wang, Z.C. Feng, Z.B. Lei, C. Li, Solid. State. Commun. 146(2008) 249, https://doi.org/10.1016/j.ssc.2008.02.016.

    51. [51]

      X.Y. Fan, H. Liu, E. Anang, D.J. Ren, Materials 14(2021) 4066, https://doi.org/10.3390/ma14154066.

    52. [52]

      Y. Tang, Z.F. Xu, Y. Sun, C.Y. Wang, Y.C. Guo, W.C. Hao, X. Tan, J.H. Ye, T. Yu, Energ. Environ. Sci. 17(2024) 7882, https://doi.org/10.1039/D4EE03092C.

    53. [53]

      J.H. Yang, H.J. Yan, X.L. Wang, F.Y. Wen, Z.J. Wang, D.Y. Fan, J.Y. Shi, C. Li, J. Catal. 290(2012) 151, https://doi.org/10.1016/j.jcat.2012.03.008.

    54. [54]

      P.B. Lin, Y. Yang, W. Chen, H.Y. Gao, X.P. Chen, J. Yuan, W.F. Shangguan, Acta. Phys.-Chim. Sin. 29(2013) 1313, https://doi.org/10.3866/PKU.WHXB201303141.

    55. [55]

      J.J. Liu, J. Phys. Chem. C 119(2015) 28417, https://doi.org/10.1021/acs.jpcc.5b09092.

    56. [56]

      T.Y. Wang, L.P. Xu, J.W. Cui, J.H. Wu, Z.F. Li, Y.C. Wu, B.N. Tian, Y. Tian, Nano. Lett. 22(2022) 6664, https://doi.org/10.1021/acs.nanolett.2c02005.

    57. [57]

      B. Yang, X. Mao, F. Hong, W.W. Meng, Y.X. Tang, X.S. Xia, S.Q. Yang, W.Q. Deng, K.L. Han, J. Am. Chem. Soc. 140(2018) 17001, https://doi.org/10.1021/jacs.8b07424.

    58. [58]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Edit. 61(2022) e202212045, https://doi.org/10.1002/ange.202212045.

    59. [59]

      N. Li, X.P. Zhai, B. Ma, H.J. Zhang, M.J. Xiao, Q. Wang, H.L. Zhang, J. Mater. Chem. A 11(2023) 4020, https://doi.org/10.1039/d2ta09777j.

    60. [60]

      C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3(2018) 862, https://doi.org/10.1038/s41560-018-0229-6.

    61. [61]

      D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. 10(2019) 5353, https://doi.org/10.1039/C9SC00217K.

    62. [62]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Edit. 62(2023) e202218688, https://doi.org/10.1002/anie.202218688.

  • 加载中
    1. [1]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    3. [3]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    6. [6]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    7. [7]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    16. [16]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    17. [17]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    18. [18]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(1)
  • Abstract views(9)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return