揭示ZnxCd1−xS固溶体光催化析氢中的直接-间接带隙跃迁机制

黄火帅 韦之栋 严嘉玮 池家晟 苏千翔 陈铭夏 江治 孙洋洲 上官文峰

引用本文: 黄火帅, 韦之栋, 严嘉玮, 池家晟, 苏千翔, 陈铭夏, 江治, 孙洋洲, 上官文峰. 揭示ZnxCd1−xS固溶体光催化析氢中的直接-间接带隙跃迁机制[J]. 物理化学学报, 2026, 42(1): 100141. doi: 10.1016/j.actphy.2025.100141 shu
Citation:  Huoshuai Huang, Zhidong Wei, Jiawei Yan, Jiasheng Chi, Qianxiang Su, Mingxia Chen, Zhi Jiang, Yangzhou Sun, Wenfeng Shangguan. Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1−xS solid solution[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100141. doi: 10.1016/j.actphy.2025.100141 shu

揭示ZnxCd1−xS固溶体光催化析氢中的直接-间接带隙跃迁机制

    通讯作者: Email: weizhidong1013@126.com (韦之栋); Email: shangguan@sjtu.edu.cn (上官文峰)
摘要: 固溶体策略可以在热力学上提高光催化性能,然而对固溶体催化剂载流子动力学的研究同样重要。本文基于能带结构调控成功合成了一系列ZnxCd1−xS固溶体,并通过飞秒瞬态吸收光谱(TAS)和密度泛函理论(DFT)研究了载流子动力学,揭示了ZnxCd1−xS固溶体中的混合直接-间接带隙跃迁机制。间接带隙表现出较低的载流子复合率,更重要的是它还可以作为载流子的捕获中心,从而提高电荷分离效率。因此,在可见光(> 420 nm)照射下,ZnxCd1−xS固溶体的析氢速率(1426.66 μmol h–1)相较于纯CdS (129.83 μmol h–1)提高了约11倍。本工作提出光催化性能的提升可能同时源于热力学和动力学两个方面,而载流子跃迁机制的改变是影响动力学的主要因素之一。

English

    1. [1]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0. doi: 10.1038/238037a0

    2. [2]

      V. Nguyen, B.S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C.C. Hu, P. Singh, P. Raizada, W.X. Peng, S.S. Lam, C.L. Xia, C.C. Nguyen, S.Y. Kim, Q.V. Le, Chem. Eng. J. 402 (2020) 126184, https://doi.org/10.1016/j.cej.2020.126184. doi: 10.1016/j.cej.2020.126184

    3. [3]

      M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. P. 30 (2020) 3837, https://doi.org/10.1007/s10904-020-01611-9. doi: 10.1007/s10904-020-01611-9

    4. [4]

      Z.D. Wei, J.Y. Liu, W.J. Fang, Z. Qin, Z. Jiang, W.F. Shangguan, Catal. Sci. Technol. 8 (2018) 3774, https://doi.org/10.1039/C8CY00959G. doi: 10.1039/C8CY00959G

    5. [5]

      R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y.X. Weng, Z.S. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30 (2018) 1705941, https://doi.org/10.1002/adma.201705941. doi: 10.1002/adma.201705941

    6. [6]

      Z.D. Wei, Y.C. Zhang, H.S. Huang, J.Y. Liu, Y.R. Zhang, X. L, Li, W.F. Shangguan, Z. Huang, Inorg. Chem. 64 (2025) 12277, https://doi.org/10.1021/acs.inorgchem.5c01686. doi: 10.1021/acs.inorgchem.5c01686

    7. [7]

      X.F. Ning, G.X. Lu, Nanoscale 12 (2020) 1213, https://doi.org/10.1039/c9nr09183a. doi: 10.1039/c9nr09183a

    8. [8]

      Z.D. Wei, J.W. Yan, Y.C. Zhang, J.S. Chi, H.S. Huang, J.Y. Liu, J.L. Mi, L.L. Ma, W.J. Fang, W.F. Shangguan, Z. Huang, Appl. Catal. B-Environ. Energy 378 (2025) 125569, https://doi.org/10.1016/j.apcatb.2025.125569. doi: 10.1016/j.apcatb.2025.125569

    9. [9]

      B.D. Liu, J. Li, W.J. Yang, X.L. Zhang, X. Jiang, Y. Bando, Small 13 (2017) 1701998, https://doi.org/10.1002/smll.201701998. doi: 10.1002/smll.201701998

    10. [10]

      H. Liu, J. Yuan, Z. Jiang, W.F. Shangguan, H. Einaga, Y. Teraoka, J. Mater. Chem. 21 (2011) 16535, https://doi.org/10.1039/C1JM11809A. doi: 10.1039/C1JM11809A

    11. [11]

      F. Dionigi, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A.K. Xiong, K. Maeda, K. Domen, I. Chorkendorff, J. Catal. 292 (2012) 26, https://doi.org/10.1016/j.jcat.2012.03.021. doi: 10.1016/j.jcat.2012.03.021

    12. [12]

      K.W. Liu, B.Y. Zhang, J.F. Zhang, W.R. Lin, J.M. Wang, Y. Xu, Y. Xiang, T. Hisatomi, K. Domen, G.J. Ma, ACS Catal. 12 (2022) 14637, https://doi.org/10.1021/acscatal.2c04361. doi: 10.1021/acscatal.2c04361

    13. [13]

      T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, J. Am. Chem. Soc. 134 (2012) 8254, https://doi.org/10.1021/ja302479f. doi: 10.1021/ja302479f

    14. [14]

      W.J. Fang, J.Y. Liu, D. Yang, Z.D. Wei, Z. Jiang, W.F. Shangguan, ACS Sustain. Chem. Eng. 5 (2017) 6578, https://doi.org/10.1021/acssuschemeng.7b00808. doi: 10.1021/acssuschemeng.7b00808

    15. [15]

      Z.D. Wei, Y. Zhu, W.Q. Guo, J.Y. Liu, W.J. Fang, Z. Jiang, W.F. Shangguan, Appl. Catal. B-Environ. 266 (2020) 118664, https://doi.org/10.1016/j.apcatb.2020.118664. doi: 10.1016/j.apcatb.2020.118664

    16. [16]

      W.Q. Guo, P.F. Yu, H.L. Luo, J.S. Chi, J. Zhi, X.S. Liu, W. Wen, W.F. Shangguan, J. Catal. 406 (2022) 193, https://doi.org/10.1016/j.jcat.2022.01.011. doi: 10.1016/j.jcat.2022.01.011

    17. [17]

      M.C. Liu, Y.B. Chen, J.Z. Su, J.W. Shi, X.X. Wang, L.J. Guo, Nat. Energy 1 (2016) 16151, https://doi.org/10.1038/NENERGY.2016.151. doi: 10.1038/NENERGY.2016.151

    18. [18]

      C.W. Wang, T. Guo, G.J. Hu, J.X. Liu, Y. Zhu, Q.J. Guo, J. Mater. Res. Technol. 32 (2024) 2433, https://doi.org/10.1016/j.jmrt.2024.08.111. doi: 10.1016/j.jmrt.2024.08.111

    19. [19]

      Y. Zhao, W.H. Xue, W.F. Sun, H.Y. Chen, X. Li, X.T. Zu, S. Li, X. Xiang, Int. J. Hydrogen Energ. 48 (2023) 31161, https://doi.org/10.1016/j.ijhydene.2023.04.215. doi: 10.1016/j.ijhydene.2023.04.215

    20. [20]

      M. Dan, A. Prakash, Q. Cai, J.L. Xiang, Y.H. Ye, Y. Li, S. Yu, Y.H. Lin, Y. Zhou, Sol. RRL 3 (2019) 1800237, https://doi.org/10.1002/solr.201800237. doi: 10.1002/solr.201800237

    21. [21]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta. Phys.-Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009. doi: 10.3866/PKU.WHXB202212009

    22. [22]

      H. Li, S.R. Tao, S.J. Wan, G.G. Qiu, Q. Long, J.G. Yu, S.W. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3. doi: 10.1016/S1872-2067(22)64201-3

    23. [23]

      T.Y. Huang, Z. Yang, S.Y. Yang, Z.H. Dai, Y.J. Liu, J.H. Liao, G.Y. Zhong, Z.J. Xie, Y.P. Fang, S.S. Zhang, J. Mater. Sci. Technol. 171 (2024) 1, https://doi.org/10.1016/j.jmst.2023.07.010. doi: 10.1016/j.jmst.2023.07.010

    24. [24]

      J.Y. He, W.S. Zhang, Z.G. Liu, Z.M. Wang, K.Q. Lu, K. Yang, J. Liaocheng Univ. Nat. Sci. Ed. 38 (2025) 421, https://doi.org/10.19728/j.issn1672-6634.2024100015. doi: 10.19728/j.issn1672-6634.2024100015

    25. [25]

      C. Wu, K.L. Lv, X. Li, Q. Li, Chin. J. Catal. 54 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64542-5. doi: 10.1016/S1872-2067(23)64542-5

    26. [26]

      M. Li, J.Z. Wang, Z.L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y. doi: 10.1007/s12598-023-02539-y

    27. [27]

      D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7 (2024) e12774, https://doi.org/10.1002/eem2.12774. doi: 10.1002/eem2.12774

    28. [28]

      P. Su, J.H. Yu, P.X. Deng, D.L. Qu, T. T Liang, H.H. Zhao, N. Yang, D.F. Zhang, B. Ge, X.P. Pu, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012. doi: 10.19728/j.issn1672-6634.2024010012

    29. [29]

      X.Y. Cai, J.H. Du, G.M. Zhong, Y.M. Zhang, L. Mao, Z.Z. Lou, Acta. Phys.-Chim. Sin. 39 (2023) 2302017, https://doi.org/10.3866/Pku.Whxb202302017. doi: 10.3866/Pku.Whxb202302017

    30. [30]

      W. Deng, X.Q. Hao, J.Q. Yang, Z.L. Jin, Appl. Catal. B-Environ. Energy 360 (2025) 124551, https://doi.org/10.1016/j.apcatb.2024.124551. doi: 10.1016/j.apcatb.2024.124551

    31. [31]

      Z.H. Xue, D.Y. Luan, H.B. Zhang, X.W. Lou, Joule 6 (2022) 92, https://doi.org/10.1016/j.joule.2021.12.011. doi: 10.1016/j.joule.2021.12.011

    32. [32]

      J.S. Chi, Z.D. Wei, W.Q. Guo, W.J. Fang, J.W. Yan, H.S. Huang, Y. Zhang, H.L. Luo, J.C. Wang, J.Y. Liu, Z. Jiang, W.F. Shangguan, ACS Catal. 15 (2025) 11293, https://doi.org/10.1021/acscatal.5c02714. doi: 10.1021/acscatal.5c02714

    33. [33]

      J.N. Ma, T.J. Miao, J.W. Tang, Chem. Soc. Rev. 51 (2022) 5777, https://doi.org/10.1039/D1CS01164B. doi: 10.1039/D1CS01164B

    34. [34]

      L.M., Z.X.X., L.B., H.B.B., Z.Z.K., ACS Nano 18 (2024) 30247, https://doi.org/10.1021/acsnano.4c10702. doi: 10.1021/acsnano.4c10702

    35. [35]

      B. Li, M. Lv, Y.J. Zhang, X.Q. Gong, Z.Z. Lou, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, B.B. Huang, Z.K. Zheng, ACS Nano 18 (2024) 25522, https://doi.org/10.1021/acsnano.4c05351. doi: 10.1021/acsnano.4c05351

    36. [36]

      T. Takata, J.Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9. doi: 10.1038/s41586-020-2278-9

    37. [37]

      M.Y. Wang, P. Wang, X.F. Wang, F. Chen, H.G. Yu, J. Mater. Sci. Technol. 174 (2024) 168, https://doi.org/10.1016/j.jmst.2023.06.065. doi: 10.1016/j.jmst.2023.06.065

    38. [38]

      J.J. Fang, C.Y. Zhu, L.C. Fang, Y.K. Chen, H.L. Hu, Y. Wu, Q.Q. Chen, J.J. Mao, Sci. China. Mater. 67 (2024) 2949, https://doi.org/10.1007/s40843-024-2995-0. doi: 10.1007/s40843-024-2995-0

    39. [39]

      J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta. Phys.-Chim. Sin. 40 (2024) 2305043, https://doi.org/10.3866/PKU.WHXB202305043. doi: 10.3866/PKU.WHXB202305043

    40. [40]

      C.H. Fu, D. Li, J.W. Zhang, W. Guo, H. Yang, B. Zhao, Z.M. Chen, X. Fu, Z.Q. Liang, L. Jiang, Chem. Res. Chin. Univ. 39 (2023) 891, https://doi.org/10.1007/s40242-023-3182-2. doi: 10.1007/s40242-023-3182-2

    41. [41]

      E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2 (2020) 012024, https://doi.org/10.1103/PhysRevResearch.2.012024. doi: 10.1103/PhysRevResearch.2.012024

    42. [42]

      K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805. doi: 10.1103/PhysRevLett.105.136805

    43. [43]

      H. Shin, D.S. Hong, H. Cho, H. Jang, G.Y. Kim, K.M. Song, M.J. Choi, D. Kim, Y.S. Jung, Nat. Commun. 15 (2024) 8125, https://doi.org/10.1038/s41467-024-52535-8. doi: 10.1038/s41467-024-52535-8

    44. [44]

      S. Halder, R. Maity, Ceram. Int. 49 (2023) 8634, https://doi.org/10.1016/j.ceramint.2022.12.096. doi: 10.1016/j.ceramint.2022.12.096

    45. [45]

      X. Wang, H.T. Huang, M.T. Zhao, W.C. Hao, Z.S. Li, Z.G. Zou, J. Phys. Chem. C 121 (2017) 6864, https://doi.org/10.1021/acs.jpcc.7b01279. doi: 10.1021/acs.jpcc.7b01279

    46. [46]

      E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulovic, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16 (2017) 115, https://doi.org/10.1038/nmat4765. doi: 10.1038/nmat4765

    47. [47]

      M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energ. Environ. Sci. 4 (2011) 1372, https://doi.org/10.1039/C0EE00604A. doi: 10.1039/C0EE00604A

    48. [48]

      S. Zhang, Q.Y. Chen, Y.H. Wang, L.J. Guo, Int. J. Hydrogen Energ. 37 (2012) 13030, https://doi.org/10.1016/j.ijhydene.2012.05.060. doi: 10.1016/j.ijhydene.2012.05.060

    49. [49]

      J. Jiang, G.H. Wang, Y.C. Shao, J. Wang, S. Zhou, Y.R. Su, Chin. J. Catal. 43 (2022) 329, https://doi.org/10.1016/S1872-2067(21)63889-5. doi: 10.1016/S1872-2067(21)63889-5

    50. [50]

      J.Y. Shi, H.J. Yan, X.L. Wang, Z.C. Feng, Z.B. Lei, C. Li, Solid. State. Commun. 146 (2008) 249, https://doi.org/10.1016/j.ssc.2008.02.016. doi: 10.1016/j.ssc.2008.02.016

    51. [51]

      X.Y. Fan, H. Liu, E. Anang, D.J. Ren, Materials 14 (2021) 4066, https://doi.org/10.3390/ma14154066. doi: 10.3390/ma14154066

    52. [52]

      Y. Tang, Z.F. Xu, Y. Sun, C.Y. Wang, Y.C. Guo, W.C. Hao, X. Tan, J.H. Ye, T. Yu, Energ. Environ. Sci. 17 (2024) 7882, https://doi.org/10.1039/D4EE03092C. doi: 10.1039/D4EE03092C

    53. [53]

      J.H. Yang, H.J. Yan, X.L. Wang, F.Y. Wen, Z.J. Wang, D.Y. Fan, J.Y. Shi, C. Li, J. Catal. 290 (2012) 151, https://doi.org/10.1016/j.jcat.2012.03.008. doi: 10.1016/j.jcat.2012.03.008

    54. [54]

      P.B. Lin, Y. Yang, W. Chen, H.Y. Gao, X.P. Chen, J. Yuan, W.F. Shangguan, Acta. Phys.-Chim. Sin. 29 (2013) 1313, https://doi.org/10.3866/PKU.WHXB201303141. doi: 10.3866/PKU.WHXB201303141

    55. [55]

      J.J. Liu, J. Phys. Chem. C 119 (2015) 28417, https://doi.org/10.1021/acs.jpcc.5b09092. doi: 10.1021/acs.jpcc.5b09092

    56. [56]

      T.Y. Wang, L.P. Xu, J.W. Cui, J.H. Wu, Z.F. Li, Y.C. Wu, B.N. Tian, Y. Tian, Nano. Lett. 22 (2022) 6664, https://doi.org/10.1021/acs.nanolett.2c02005. doi: 10.1021/acs.nanolett.2c02005

    57. [57]

      B. Yang, X. Mao, F. Hong, W.W. Meng, Y.X. Tang, X.S. Xia, S.Q. Yang, W.Q. Deng, K.L. Han, J. Am. Chem. Soc. 140 (2018) 17001, https://doi.org/10.1021/jacs.8b07424. doi: 10.1021/jacs.8b07424

    58. [58]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Edit. 61 (2022) e202212045, https://doi.org/10.1002/ange.202212045. doi: 10.1002/ange.202212045

    59. [59]

      N. Li, X.P. Zhai, B. Ma, H.J. Zhang, M.J. Xiao, Q. Wang, H.L. Zhang, J. Mater. Chem. A 11 (2023) 4020, https://doi.org/10.1039/d2ta09777j. doi: 10.1039/d2ta09777j

    60. [60]

      C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3 (2018) 862, https://doi.org/10.1038/s41560-018-0229-6. doi: 10.1038/s41560-018-0229-6

    61. [61]

      D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. 10 (2019) 5353, https://doi.org/10.1039/C9SC00217K. doi: 10.1039/C9SC00217K

    62. [62]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Edit. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688. doi: 10.1002/anie.202218688

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  27
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2026-01-15
  • 收稿日期:  2025-06-16
  • 接受日期:  2025-07-27
  • 修回日期:  2025-07-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章