功函数工程调控Mo2C MXene的Mo 4d电子结构以提升光催化产氢效率

刘瑞云 王苹 王雪飞 陈峰 余火根

引用本文: 刘瑞云, 王苹, 王雪飞, 陈峰, 余火根. 功函数工程调控Mo2C MXene的Mo 4d电子结构以提升光催化产氢效率[J]. 物理化学学报, 2025, 41(11): 100137. doi: 10.1016/j.actphy.2025.100137 shu
Citation:  Ruiyun Liu, Ping Wang, Xuefei Wang, Feng Chen, Huogen Yu. Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100137. doi: 10.1016/j.actphy.2025.100137 shu

功函数工程调控Mo2C MXene的Mo 4d电子结构以提升光催化产氢效率

    通讯作者: 王苹, wangping0904@whut.edu.cn; 余火根, yuhuogen@cug.edu.cn
  • 基金项目:

    国家自然科学基金 22472127

    国家自然科学基金 22178275

    国家自然科学基金 U22A20147

    湖北省自然科学基金 2022CFA001

摘要: Mo2C MXene(Mo2CTx)由于其表面Mo活性位点具有类Pt的电子结构在光催化中展现出优异的析氢潜力。然而,Mo2CTx中的Mo位点在析氢反应(HER)过程中通常表现出过强的H吸附能力,显著限制了Mo2CTx的本征催化活性。为了削弱Mo活性位点的H吸附能力,本论文通过功函数诱导效应原位构建MoC-Mo2C MXene异质结,实现了d轨道电子的调控。利用Co诱导的熔盐法将Mo2C MXene原位转化为MoC,随后通过简单的超声辅助方法与TiO2耦合,制备了MoC-Mo2CTx/TiO2光催化剂。光催化产氢测试表明,最优的MoC-Mo2CTx/TiO2样品实现了1886 μmol∙h−1∙g−1的产氢速率,分别是TiO2和Mo2CFx/TiO2(Mo2CFx通过常规蚀刻剂NH4F+HCl制备)的117.9倍和3.9倍。实验和理论计算证实,MoC与Mo2C MXene之间的功函数梯度诱导电子从MoC向Mo2C MXene转移,从而削弱了Mo2CTx助催化剂中Mo活性位点的H吸附能力,进而提升了其HER活性。该研究为原位构建基于Mo2C MXene的异质结以调控Mo活性位点的H吸附能力提供了一种新策略。

English

    1. [1]

      S. Parwaiz, M. M. Khan, J. Environ. Chem. Eng. 12 (2024) 113175, https://doi.org/10.1016/j.jece.2024.113175. doi: 10.1016/j.jece.2024.113175

    2. [2]

      H. Xie, K. Wang, S. Li, Z. Jin, Surf. Interfaces 42 (2023) 103353, https://doi.org/10.1016/j.surfin.2023.103353. doi: 10.1016/j.surfin.2023.103353

    3. [3]

      Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chin. J. Catal. 52 (2023) 32, https://doi.org/10.1016/S1872-2067(23)64502-4. doi: 10.1016/S1872-2067(23)64502-4

    4. [4]

      F. Li, Z. Fang, Z. Xu, Q. Xiang, Energy Environ. Sci. 17 (2024) 497, https://doi.org/10.1039/D3EE03282E. doi: 10.1039/D3EE03282E

    5. [5]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    6. [6]

      C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 7 (2017) 675, https://doi.org/10.1021/acscatal.6b03107. doi: 10.1021/acscatal.6b03107

    7. [7]

      T. Yang, X. Hu, J. Fan, T. Sun, E. Liu, Surf. Interfaces 42 (2023) 103352, https://doi.org/10.1016/j.surfin.2023.103352. doi: 10.1016/j.surfin.2023.103352

    8. [8]

      R. Zhong, Y. Liang, F. Huang, S. Liang, S. Liu, Chin. J. Catal. 53 (2023) 109, https://doi.org/10.1016/S1872-2067(23)64513-9. doi: 10.1016/S1872-2067(23)64513-9

    9. [9]

      C. Bie, L. Wang, J. Yu, Chem 8 (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013. doi: 10.1016/j.chempr.2022.04.013

    10. [10]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/s1872-2067(24)60011-2. doi: 10.1016/s1872-2067(24)60011-2

    11. [11]

      T. Wang, H. Wang, J. Lin, J. Yang, F. Zhang, X. Lin, Y. Zhang, S. Jin, J. Li, Chin. J. Struct. Chem. 42 (2023) 100066, https://doi.org/10.1016/j.cjsc.2023.100066. doi: 10.1016/j.cjsc.2023.100066

    12. [12]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.whxb202312014. doi: 10.3866/pku.whxb202312014

    13. [13]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6. doi: 10.1016/S1872-2067(23)64462-6

    14. [14]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047. doi: 10.1016/j.jmst.2024.12.047

    15. [15]

      H. Zhang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 49 (2023) 42, https://doi.org/10.1016/S1872-2067(23)64444-4. doi: 10.1016/S1872-2067(23)64444-4

    16. [16]

      H. Zhang, X. Yao, W. Shan, Y. Liu, H. Tang, Sci. China Mater. 67 (2024) 532, https://doi.org/10.1007/s40843-023-2769-8. doi: 10.1007/s40843-023-2769-8

    17. [17]

      Y. Wang, S. Jiang, C. Sun, S. Song, J. Mater. Sci. Technol. 190 (2024) 210, https://doi.org/10.1016/j.jmst.2023.12.026. doi: 10.1016/j.jmst.2023.12.026

    18. [18]

      Y. Yang, C. Zhou, W. Wang, W. Xiong, G. Zeng, D. Huang, C. Zhang, B. Song, W. Xue, X. Li, et al., Chem. Eng. J. 405 (2021) 126547, https://doi.org/10.1016/j.cej.2020.126547. doi: 10.1016/j.cej.2020.126547

    19. [19]

      Y. Cao, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Chem. C 12 (2024) 10152, https://doi.org/10.1039/D4TC01076K. doi: 10.1039/D4TC01076K

    20. [20]

      Y. Lei, K. H. Ng, Y. Zhu, Y. Zhang, Z. Li, S. Xu, J. Huang, J. Hu, Z. Chen, W. Cai, et al., Chem. Eng. J. 452 (2023) 139325, https://doi.org/10.1016/j.cej.2022.139325. doi: 10.1016/j.cej.2022.139325

    21. [21]

      K. R. G. Lim, A. D. Handoko, L. R. Johnson, X. Meng, M. Lin, G. S. Subramanian, B. Anasori, Y. Gogotsi, A. Vojvodic, Z. W. Seh, ACS Nano 14 (2020) 16140, https://doi.org/10.1021/acsnano.0c08671. doi: 10.1021/acsnano.0c08671

    22. [22]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal. B: Environ. Energy 365 (2025) 124936, https://doi.org/10.1016/j.apcatb.2024.124936. doi: 10.1016/j.apcatb.2024.124936

    23. [23]

      H. -X. Yang, W. Xu, P. -W. Zhong, D. Zhang, Z. Yu, B. Li, H. Wang, Y. Cao, H. -F. Wang, H. Yu, J. Energy Chem. 105 (2025) 121, https://doi.org/10.1016/j.jechem.2025.01.048. doi: 10.1016/j.jechem.2025.01.048

    24. [24]

      X. Ke, M. Pan, R. Liu, P. Wang, X. Wang, H. Yu, Sol. RRL 7 (2023) 2300669, https://doi.org/10.1002/solr.202300669. doi: 10.1002/solr.202300669

    25. [25]

      X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan, Y. Xie, P. R. C. Kent, W. Zhou, S. J. Pennycook, K. P. Loh, Adv. Mater 31 (2019) 1808343, https://doi.org/10.1002/adma.201808343. doi: 10.1002/adma.201808343

    26. [26]

      H. Zou, M. Pan, P. Wang, F. Chen, X. Wang, H. Yu, Catal. Sci. Technol. 14 (2024) 5731, https://doi.org/10.1039/D4CY00882K. doi: 10.1039/D4CY00882K

    27. [27]

      J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. -Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi, et al., Adv. Funct. Mater. 26 (2016) 3118, https://doi.org/10.1002/adfm.201505328. doi: 10.1002/adfm.201505328

    28. [28]

      X. Tian, M. Xu, Y. Li, H. Liu, B. Cao, R. A. Soomro, P. Zhang, B. Xu, Chem. Eng. J. 489 (2024) 151510, https://doi.org/10.1016/j.cej.2024.151510. doi: 10.1016/j.cej.2024.151510

    29. [29]

      Y. Deng, Y. Ge, M. Xu, Q. Yu, D. Xiao, S. Yao, D. Ma, Acc. Chem. Res. 52 (2019) 3372, https://doi.org/10.1021/acs.accounts.9b00182. doi: 10.1021/acs.accounts.9b00182

    30. [30]

      S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li, Chem. Eng. J. 430 (2022) 132697, https://doi.org/10.1016/j.cej.2021.132697. doi: 10.1016/j.cej.2021.132697

    31. [31]

      Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 54 (2015) 52, https://doi.org/10.1002/anie.201407031. doi: 10.1002/anie.201407031

    32. [32]

      S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39 (1972) 163, https://doi.org/10.1016/S0022-0728(72)80485-6. doi: 10.1016/S0022-0728(72)80485-6

    33. [33]

      J. Wang, Y. Zhang, S. Jiang, C. Sun, S. Song, Angew. Chem., Int. Ed. 62 (2023) e202307808, https://doi.org/10.1002/anie.202307808. doi: 10.1002/anie.202307808

    34. [34]

      H. Long, D. Gao, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal., B 340 (2024) 123270, https://doi.org/10.1016/j.apcatb.2023.123270. doi: 10.1016/j.apcatb.2023.123270

    35. [35]

      Y. Wu, L. Wang, T. Bo, Z. Chai, J. K. Gibson, W. Shi, Adv. Funct. Mater. 33 (2023) 2214375, https://doi.org/10.1002/adfm.202214375. doi: 10.1002/adfm.202214375

    36. [36]

      G. Qu, Y. Zhou, T. Wu, G. Zhao, F. Li, Y. Kang, C. Xu, ACS Appl. Energy Mater. 1 (2018) 7206, https://doi.org/10.1021/acsaem.8b01642. doi: 10.1021/acsaem.8b01642

    37. [37]

      M. Yi, S. Hu, N. Li, H. Wang, J. Zhang, J. Energy Chem. 72 (2022) 453, https://doi.org/10.1016/j.jechem.2022.05.040. doi: 10.1016/j.jechem.2022.05.040

    38. [38]

      M. Pan, P. Wang, X. Wang, F. Chen, H. Yu, ACS Sustainable Chem. Eng. 11 (2023) 13222, https://doi.org/10.1021/acssuschemeng.3c04308. doi: 10.1021/acssuschemeng.3c04308

    39. [39]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Chem. Eng. J. 495 (2024) 153477, https://doi.org/10.1016/j.cej.2024.153477. doi: 10.1016/j.cej.2024.153477

    40. [40]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Small 20 (2024) 2405378, https://doi.org/10.1002/smll.202405378. doi: 10.1002/smll.202405378

    41. [41]

      R. Liu, P. Wang, X. Wang, F. Chen, H. Yu, Small 21 (2025) 2408330, https://doi.org/10.1002/smll.202408330. doi: 10.1002/smll.202408330

    42. [42]

      J. Xu, B. Zhao, X. Wang, X. Wu, H. Yu, Chem. Eng. J. 506 (2025) 160107, https://doi.org/10.1016/j.cej.2025.160107. doi: 10.1016/j.cej.2025.160107

    43. [43]

      J. Xu, X. Zhang, X. Wang, J. Zhang, J. Yu, H. Yu, ACS Catal. 14 (2024) 15444, https://doi.org/10.1021/acscatal.4c03916. doi: 10.1021/acscatal.4c03916

    44. [44]

      D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20 (2024) 2309123, https://doi.org/10.1002/smll.202309123. doi: 10.1002/smll.202309123

    45. [45]

      C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019. doi: 10.1016/j.jmst.2023.07.019

    46. [46]

      M. Chen, C. Song, C. Liang, B. Zhang, Y. Sun, S. Li, L. Lin, P. Xu, Inorg. Chem. Front. 9 (2022) 2575, https://doi.org/10.1039/D2QI00543C. doi: 10.1039/D2QI00543C

    47. [47]

      D. Majchrzak, K. Kulinowski, W. Olszewski, R. Kuna, D. Hlushchenko, A. Piejko, M. Grodzicki, D. Hommel, R. Kudrawiec, ACS Appl. Mater. Interfaces 16 (2024) 59567, https://doi.org/10.1021/acsami.4c13225. doi: 10.1021/acsami.4c13225

    48. [48]

      S. Jin, Z. Shi, H. Jing, L. Wang, Q. Hu, D. Chen, N. Li, A. Zhou, ACS Appl. Energy Mater. 4 (2021) 12754, https://doi.org/10.1021/acsaem.1c02456. doi: 10.1021/acsaem.1c02456

    49. [49]

      S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S. Kim, J. H. Jang, Y. Jung, et al., ACS Nano 14 (2020) 4988, https://doi.org/10.1021/acsnano.0c01285. doi: 10.1021/acsnano.0c01285

    50. [50]

      Y. Guo, S. Jin, L. Wang, P. He, Q. Hu, L. Fan, A. Zhou, Ceram. Int. 46 (2020) 19550, https://doi.org/10.1016/j.ceramint.2020.05.008. doi: 10.1016/j.ceramint.2020.05.008

    51. [51]

      J. Li, Y. Li, X. Wang, Z. Yang, G. Zhang, Chin. J. Catal. 51 (2023) 145, https://doi.org/10.1016/S1872-2067(23)64484-5. doi: 10.1016/S1872-2067(23)64484-5

    52. [52]

      Z. Chen, P. Wang, X. Wang, H. Yu, Surf. Interfaces 51 (2024) 104684, https://doi.org/10.1016/j.surfin.2024.104684. doi: 10.1016/j.surfin.2024.104684

    53. [53]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147, https://doi.org/10.1016/j.jmst.2023.06.048. doi: 10.1016/j.jmst.2023.06.048

    54. [54]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3. doi: 10.1016/S1872-2067(23)64466-3

    55. [55]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x. doi: 10.1038/s41467-025-56306-x

    56. [56]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/pku.Whxb202307016. doi: 10.3866/pku.Whxb202307016

    57. [57]

      Z. Yu, C. Guan, X. Yue, Q. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/S1872-2067(23)64448-1. doi: 10.1016/S1872-2067(23)64448-1

    58. [58]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, et al., Chin. J. Struct. Chem. 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194. doi: 10.1016/j.cjsc.2023.100194

    59. [59]

      P. Sun, J. Zhang, Y. Song, Z. Mo, Z. Chen, H. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/PKU.WHXB202311001. doi: 10.3866/PKU.WHXB202311001

    60. [60]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013. doi: 10.1016/j.jmst.2025.02.013

    61. [61]

      K. Huang, B. Feng, X. Wen, L. Hao, D. Xu, G. Liang, R. Shen, X. Li, Chin. J. Struct. Chem. 42 (2023) 100204, https://doi.org/10.1016/j.cjsc.2023.100204. doi: 10.1016/j.cjsc.2023.100204

    62. [62]

      F. Yan, Y. Zhang, S. Liu, R. Zou, J. B. Ghasemi, X. Li, Chin. J. Catal. 51 (2023) 124, https://doi.org/10.1016/S1872-2067(23)64475-4. doi: 10.1016/S1872-2067(23)64475-4

    63. [63]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6. doi: 10.1038/s41467-024-53951-6

    64. [64]

      F. Jin, B. Yang, X. Wang, T. Li, N. Tsubaki, Z. Jin, Chin. J. Struct. Chem. 42 (2023) 100198, https://doi.org/10.1016/j.cjsc.2023.100198. doi: 10.1016/j.cjsc.2023.100198

    65. [65]

      Z. Zhou, H. Yao, Y. Wu, T. Li, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 40 (2024) 2312010, https://doi.org/10.3866/pku.whxb202312010. doi: 10.3866/pku.whxb202312010

    66. [66]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    67. [67]

      J. Xia, S. Xing, T. Sun, H. Ma, T. Gao, E. Liu, Renew. Energ. 237 (2024) 121773, https://doi.org/10.1016/j.renene.2024.121773. doi: 10.1016/j.renene.2024.121773

    68. [68]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102 doi: 10.1016/j.jmst.2024.12.102

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  44
  • HTML全文浏览量:  6
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-29
  • 接受日期:  2025-07-24
  • 修回日期:  2025-07-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章