ZIS1−x/UCN S型异质结界面的超快电子转移实现高效H2O2光合成耦合四环素降解

张淑敏 王亚琪 王泽林 王立博 安长胜 许第发

引用本文: 张淑敏, 王亚琪, 王泽林, 王立博, 安长胜, 许第发. ZIS1−x/UCN S型异质结界面的超快电子转移实现高效H2O2光合成耦合四环素降解[J]. 物理化学学报, 2025, 41(11): 100136. doi: 10.1016/j.actphy.2025.100136 shu
Citation:  Shumin Zhang, Yaqi Wang, Zelin Wang, Libo Wang, Changsheng An, Difa Xu. Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100136. doi: 10.1016/j.actphy.2025.100136 shu

ZIS1−x/UCN S型异质结界面的超快电子转移实现高效H2O2光合成耦合四环素降解

    通讯作者: 安长胜, z20190628@ccsu.edu.cn; 许第发, xudifa@sina.com
  • 基金项目:

    湖南省教育厅 24B0787

    国家自然科学基金 52204307

    国家自然科学基金 52202376

摘要: 将产过氧化氢与有机污染物降解相结合,不仅能有效克服水氧化反应动力学迟缓的问题,同时还能应对环境污染挑战。在这项工作中,通过在多孔超薄UCN上原位生长ZIS1−x纳米片,构建了一种富含S缺陷的ZnIn2S4/g-C3N4 (ZIS1−x/UCN) S型异质结光催化剂。设计的ZIS1−x/UCN光催化剂表现出增强的可见光吸收、丰富的活性位点和紧密的界面接触。优化后的ZIS1−x/UCN-1.0光催化剂表现出出色的双重功能,同时实现了2902.2 µmol·g−1·h−1的H2O2生成速率和91.3%的四环素(50 mg·L−1)降解效率。与在纯水中的活性(1777.0 µmol·g−1·h−1)相比,H2O2性能提高了1.63倍。通过飞秒瞬态吸收光谱(fs-TAS)、原位X射线光电子能谱(ISI-XPS)和原位X射线吸收精细结构光谱(XAFS)的综合表征,我们证实了S型异质结电荷转移机制。这种S型异质结诱导的独特电子结构不仅促进了界面上的超快电子转移(3.54 ps),还显著增强了光生载流子的氧化还原能力。总体而言,这项工作为光催化技术在能源生产和环境修复领域的双重应用开辟了新的途径。

English

    1. [1]

      J. Song, C. Li, X. Zhang, P. Ma, K. Zheng, ACS Catal. 15 (2025) 9058, https://doi.org/10.1021/acscatal.5c01609. doi: 10.1021/acscatal.5c01609

    2. [2]

      K. Zhang, S. Yuan, L. Zhang, Q. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010. doi: 10.3866/PKU.WHXB202212010

    3. [3]

      G. Gao, Y. Tian, X. Gong, Z. Pan, K. Yang, B. Zong, Chin. J. Catal. 41 (2020) 1039, https://doi.org/10.1016/s1872-2067(20)63562-8. doi: 10.1016/s1872-2067(20)63562-8

    4. [4]

      Q. Zhang, C. Dong, C. Xue, H. Che, K. Zhang, Y. Ao, Angew. Chem. Int. Ed. 64 (2024) e202417591, https://doi.org/10.1002/anie.202417591. doi: 10.1002/anie.202417591

    5. [5]

      Z. Chen, D. Yao, C. Chu, S. Mao, Chem. Eng. J. 451 (2023) 138489, https://doi.org/10.1016/j.cej.2022.138489. doi: 10.1016/j.cej.2022.138489

    6. [6]

      Y. Luo, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 62 (2023) e202305355, https://doi.org/10.1002/anie.202305355. doi: 10.1002/anie.202305355

    7. [7]

      S. Qu, Y. Ng, Adv. Energy Mater. 13 (2023) 2301047, https://doi.org/10.1002/aenm.202301047. doi: 10.1002/aenm.202301047

    8. [8]

      Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980, https://doi.org/10.1002/ange.202308980. doi: 10.1002/ange.202308980

    9. [9]

      L. Sun, Z. Shen, Y. Pang, X. Ma, D. Qu, L. An, Z. Sun, Adv. Energ. Sust. Res. 4 (2023) 2300090, https://doi.org/10.1002/aesr.202300090. doi: 10.1002/aesr.202300090

    10. [10]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012. doi: 10.1016/j.mattod.2024.11.012

    11. [11]

      Y. Zhang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985. doi: 10.1016/j.jmat.2024.100985

    12. [12]

      K. Meng, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    13. [13]

      Y. Yang, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B: Environ. 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780. doi: 10.1016/j.apcatb.2023.122780

    14. [14]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1039/D2CC06300J. doi: 10.1039/D2CC06300J

    15. [15]

      Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao, L. Jiang, C. Zhang, X. Yuan, E. H. Ang, H. Wang, Angew. Chem. Int. Ed. 62 (2023) e202309480, https://doi.org/10.1002/anie.202309480. doi: 10.1002/anie.202309480

    16. [16]

      X. Zhang, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7

    17. [17]

      M. Gu, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal. B: Environ. 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227. doi: 10.1016/j.apcatb.2022.122227

    18. [18]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121. doi: 10.1016/j.actphy.2025.100121

    19. [19]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001. doi: 10.1016/j.jmst.2024.12.001

    20. [20]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    21. [21]

      Y. Zhao, S. Zhang, Z. Wu, B. Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872‐2067(23)64645-5. doi: 10.1016/S1872‐2067(23)64645-5

    22. [22]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, https://doi.org/10.1016/S1872-2067(24)60008-2. doi: 10.1016/S1872-2067(24)60008-2

    23. [23]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974. doi: 10.1016/j.jmat.2024.100974

    24. [24]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079. doi: 10.1002/smll.202409079

    25. [25]

      S. Zhang, C. An, R. Zhang, D. Kong, D. Xu, S. Zhang, Langmuir 40 (2024) 6453, https://doi.org/10.1021/acs.langmuir.3c04029. doi: 10.1021/acs.langmuir.3c04029

    26. [26]

      S. Zhang, C. An, K. Xu, Y. Zhao, Y. Zhang, D. Xu, S. Zhang, J. Mater. Sci. Technol. 233 (2025) 1, https://doi.org/10.1016/j.jmst.2025.02.020. doi: 10.1016/j.jmst.2025.02.020

    27. [27]

      R. Zhang, C. An, S. Zhang, Y. Zhang, Y. Wang, Y. Meng, J. Li, D. Xu, S. Zhang, Int. J. Hydrogen Energ. 84 (2024) 731, https://doi.org/10.1016/j.ijhydene.2024.08.236. doi: 10.1016/j.ijhydene.2024.08.236

    28. [28]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    29. [29]

      F. Xu, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    30. [30]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2. doi: 10.1007/s40843-023-2755-2

    31. [31]

      J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B: Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011. doi: 10.1016/j.apcatb.2018.11.011

    32. [32]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456. doi: 10.1002/anie.202505456

    33. [33]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    34. [34]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    35. [35]

      Y. Liu, X. Chen, M. Kamali, B. Rossi, L. Appels, R. Dewil, Adv. Funct. Mater. 34 (2024) 2405741, https://doi.org/10.1002/adfm.202405741. doi: 10.1002/adfm.202405741

    36. [36]

      K. Zhang, J. Yang, F. Wu, L. Wang, H. Tang, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302964, https://doi.org/10.1002/adfm.202302964. doi: 10.1002/adfm.202302964

    37. [37]

      S. Zhang, H. Dong, C. An, Z. Li, D. Xu, K. Xu, Z. Wu, J. Shen, X. Chen, S. Zhang, J. Mater. Sci. Technol. 75 (2021) 59, https://doi.org/10.1016/j.jmst.2020.10.030. doi: 10.1016/j.jmst.2020.10.030

    38. [38]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036

    39. [39]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975. doi: 10.1016/j.jmat.2024.100975

    40. [40]

      M. Tan, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao, L. Gao, Q. Lu, et al., Adv. Funct. Mater. 32 (2022) 2111740, https://doi.org/10.1002/adfm.202111740. doi: 10.1002/adfm.202111740

    41. [41]

      S. Zhang, D. Xu, X. Chen, S. Zhang, C. An, Appl. Surf. Sci. 528 (2020) 146858, https://doi.org/10.1016/j.apsusc.2020.146858. doi: 10.1016/j.apsusc.2020.146858

    42. [42]

      G. Sun, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B: Environ. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459. doi: 10.1016/j.apcatb.2024.124459

    43. [43]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8. doi: 10.1016/S1872-2067(24)60014-8

    44. [44]

      S. Wang, L. Xue, Q. Kang, L. Wen, K. Lv, Appl. Catal. B: Environ. 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366. doi: 10.1016/j.apcatb.2024.124366

    45. [45]

      X. Liu, G. Yang, Z. Wang, G. Gao, M. Dou, H. Yang, R. Li, D. Li, J. Dou, Int. J. Hydrogen Energ. 51 (2024) 410, https://doi.org/10.1016/j.ijhydene.2023.06.229. doi: 10.1016/j.ijhydene.2023.06.229

    46. [46]

      X. Zhang, W. Macyk, S. Wageh, A. A. Al-Ghamdi, L. Wang, Adv. Sustainable Syst. 444 (2022) 2200113, https://doi.org/10.1002/adsu.202200113. doi: 10.1002/adsu.202200113

    47. [47]

      F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Nat. Commun. 14 (2023) 3901, https://doi.org/10.1038/s41467-023-39578-z. doi: 10.1038/s41467-023-39578-z

    48. [48]

      Y. Quan, J. Li, X. Li, R. Chen, Y. Zhang, J. Huang, J. Hu, Y. Lai, Appl. Catal. B: Environ. 362 (2025) 124711, https://doi.org/10.1016/j.apcatb.2024.124711. doi: 10.1016/j.apcatb.2024.124711

    49. [49]

      Y. Huang, S. Feng, C. Ma, P. Cao, F. Li, X. Lu, W. Shi, Sci. China Mater. 67 (2024) 1812, https://doi.org/10.1007/s40843-024-2844-8. doi: 10.1007/s40843-024-2844-8

    50. [50]

      H. Tan, W. Si, R. Zhang, W. Peng, X. Liu, X. Zheng, F. Hou, L. Yin, J. Liang, Angew. Chem. Int. Ed. 64 (2025) e202416684, https://doi.org/10.1002/anie.202416684. doi: 10.1002/anie.202416684

    51. [51]

      Q. Wang, Y. Xiao, S. Yang, Y. Zhang, L. Wu, H. Pan, D. Rao, T. Chen, Z. Sun, G. Wang, et al., Nano Lett. 22 (2022) 10216, https://doi.org/10.1021/acs.nanolett.2c03595. doi: 10.1021/acs.nanolett.2c03595

    52. [52]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978. doi: 10.1016/j.jmat.2024.100978

    53. [53]

      X. Li, W. Ho, S. Han, P. Wang, S. Lee, Z. Zhang, Appl. Cat. B: Environ. 338 (2023) 123048, https://doi.org/10.1016/j.apcatb.2023.123048. doi: 10.1016/j.apcatb.2023.123048

    54. [54]

      J. Wang, Y. Jiang, J. Wan, B. Zheng, Y. Li, B. Jiang, Sci. China Mater. 66 (2023) 1053, https://doi.org/10.1007/s40843-022-2218-7. doi: 10.1007/s40843-022-2218-7

    55. [55]

      J. Qiu, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    56. [56]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    57. [57]

      Y. Zhang, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1002/smll.202409079. doi: 10.1002/smll.202409079

    58. [58]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8. doi: 10.1016/S1872-2067(23)64610-8

    59. [59]

      Y. Zhao, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0. doi: 10.1016/S1872-2067(24)60069-0

    60. [60]

      J. Hu, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36 (2024) 2412070, https://doi.org/10.1002/adma.202412070. doi: 10.1002/adma.202412070

    61. [61]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005. doi: 10.1016/j.jmst.2025.03.005

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  119
  • HTML全文浏览量:  30
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-24
  • 接受日期:  2025-07-23
  • 修回日期:  2025-07-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章