Citation: Shiyi Chen,  Jialong Fu,  Jianping Qiu,  Guoju Chang,  Shiyou Hao. Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100135. doi: 10.1016/j.actphy.2025.100135 shu

Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction

  • Corresponding author: Shiyou Hao, sky54@zjnu.cn
  • Received Date: 22 June 2025
    Revised Date: 19 July 2025

  • The coronavirus disease 2019 (COVID-19) pandemic has increased the necessity of medical masks, and to date, many waste masks have been discarded without being reprocessed, causing environmental harm. PET, a commonly used plastic product, presents certain hurdles to its natural degradation. In this work, waste medical masks were converted into carbon quantum dots (MCQDs) with blue fluorescence emissions using a simple solvothermal process and then doped into BiOBr/g-C3N4 composite material to construct S-scheme heterojunctions for PET degradation. Density functional theory (DFT) calculations revealed that an interfacial electric field (IEF) was formed between g-C3N4 and BiOBr. The findings demonstrate that the MCQDs, as a cocatalyst for electron transmission and storage, encourage S-scheme heterojunctions to further separate photogenerated electrons and holes. Levofloxacin (LEV) was used as a molecular probe to visually compare the catalytic activities of various catalysts. These catalysts with different photocatalytic activity were then used to degrade PET. The findings demonstrate that the degradation efficiency of PET over the BiOBr/g-C3N4/3MCQDs in seawater is 39.88 ± 1.04% (weight loss), which is 1.37 times higher than that of BiOBr/g-C3N4, and also better than those reported in most of the literature. Free radical capture tests, electrostatic field orbital trap high-resolution gas chromatography-mass spectrometry (HRGC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) experiments uncovered and briefly revealed the key products in the photocatalytic degradation of PET, as well as the relevant mechanism of photocatalytic degradation of PET. The degradation products are expected to become precursors for the further production of polymers and medicines, etc. This study offers fresh perspectives for the creation of innovative photocatalysts for the ecologically benign breakdown of PET, which helps to further lessen environmental damage caused by microplastics (MPs) and enhance resource sustainability.
  • 加载中
    1. [1]

      S. Zhao, K.F. Kvale, L. Zhu, E.R. Zettler, M. Egger, T.J. Mincer, L.A. Amaral-Zettler, L. Lebreton, H. Niemann, R. Nakajima, M. Thiel, R.P. Bos, L. Galgani, A. Stubbins, Nature 641(2025) 51, https://doi.org/10.1038/s41586-025-08818-1.

    2. [2]

      N.H. Le, T.T. Ngoc Van, B. Shong, J. Cho, ACS Sustainable Chem. Eng. 10(2022) 17261, https://doi.org/10.1021/acssuschemeng.2c05570.

    3. [3]

      J. Ma, F. Chen, C.C. Chen, Z. Zhang, Z. Zhong, H. Jiang, J. Pu, Y. Li, K. Pan, J. Hazard. Mater. 455(2023) 131583, https://doi.org/10.1016/j.jhazmat.2023.131583.

    4. [4]

      Q. Qian, Q. Pu, L. Li, J. Wu, G. Cheng, Y. Cheng, X. Wang, H. Wang, J. Hazard. Mater. 488(2025) 137306, https://doi.org/10.1016/j.jhazmat.2025.137306.

    5. [5]

      R.G. Santos, G.E. Machovsky-Capuska, R. Andrades, Science 373(2021) 56, https://doi.org/10.1126/science.abh0945.

    6. [6]

      M. Wang, P. Zhou, S. DuBay, S. Zhang, Z. Yang, Y. Wang, J. Zhang, Y. Cao, Z. Hu, X. He, S. Wang, M. Li, C. Fan, B. Zou, C. Zhou, Y. Wu, J. Hazard. Mater. 487(2025) 137274, https://doi.org/10.1016/j.jhazmat.2025.137274.

    7. [7]

      S.J. Proma, B. Biswas, M.Y. Noor, H.C. Allen, Environ. Sci. Technol. 59(2025) 10215, https://doi.org/10.1021/acs.est.5c04793.

    8. [8]

      S. Huang, X. Huang, R. Bi, Q. Guo, X. Yu, Q. Zeng, Z. Huang, T. Liu, H. Wu, Y. Chen, J. Xu, Y. Wu, P. Guo, Environ. Sci. Technol. 56(2022) 2476, https://doi.org/10.1021/acs.est.1c03859.

    9. [9]

      L. Ma, Z.Y. Fan, W.Q. Lian, X.F. Wei, R.Y. Bao, W. Yang, J. Hazard. Mater. 489(2025) 137640, https://doi.org/10.1016/j.jhazmat.2025.137640.

    10. [10]

      G. Ji, Y. Xing, T. You, J. Environ. Chem. Eng. 12(2024) 113377, https://doi.org/10.1016/j.jece.2024.113377.

    11. [11]

      J. Luo, H. Han, X. Wang, X. Qiu, B. Liu, Y. Lai, X. Chen, R. Zhong, L. Wang, C. Wang, Appl. Catal. B: Environ. Energy 328(2023) 122495, https://doi.org/10.1016/j.apcatb.2023.122495.

    12. [12]

      F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chinese J. Catal. 41(2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6.

    13. [13]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40(2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.

    14. [14]

      R. Ma, C. Li, Y. Su, S. Hou, W. Zhang, H. Wang, J. Environ. Chem. Eng. 13(2025) 116421, https://doi.org/10.1016/j.jece.2025.116421.

    15. [15]

      X. Qian, W. Li, X. Wang, H. Guan, Q. Bao, B. Zhao, B. Wulan, S. Liu, D. Zhu, X. Feng, J. Sun, Adv. Func. Mater. 35(2025) 2416946, https://doi.org/10.1002/adfm.202416946.

    16. [16]

      H. Wang, L. Yu, J. Jiang, Arramel, J. Zou, Acta Phys. -Chim. Sin. 40(2024) 2305047, https://doi.org/10.3866/PKU.WHXB202305047.

    17. [17]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2310600, https://doi.org/10.1002/adma.202310600.

    18. [18]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67(2024) 444, https://doi.org/10.1007/s40843-023-2755-2.

    19. [19]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41(2025) 100052, https://doi.org/10.1016/j.actphy.2025.100052.

    20. [20]

      Y. Huang, T. Ding, W. Zuo, Z. Nie, M. Zheng, Y. Zeng, Environ. Res. 274(2025) 121302, https://doi.org/10.1016/j.envres.2025.121302.

    21. [21]

      C. Zheng, Y. Guo, C. Zhang, X. Cao, J. Wan, Appl. Catal. B: Environ. Energy 365(2025) 124879, https://doi.org/10.1016/j.apcatb.2024.124879.

    22. [22]

      J. Lu, Z. Li, B. Wu, Z. Jiang, C. Pei, ACS Appl. Nano Mater. 8(2025) 6133, https://doi.org/10.1021/acsanm.5c00363.

    23. [23]

      X. Wang, Z. Zhu, J. Jiang, R. Li, J. Xiong, Chemosphere 337(2023) 139206, https://doi.org/10.1016/j.chemosphere.2023.139206.

    24. [24]

      S. Wu, J. Peng, Y. Jiang, S. Lin, Chinese Chem. Lett. (2025) 110819, https://doi.org/10.1016/j.cclet.2025.110819.

    25. [25]

      Y. Shi, J. Li, D. Huang, X. Wang, Y. Huang, C. Chen, R. Li, ACS Catal. 13(2023) 445, https://doi.org/10.1021/acscatal.2c04228.

    26. [26]

      L. Ouyang, M. Ng, Z. Zhou, H. Wu, M. Tang, S.S. Chen, Adv. Sci. 12(2025) 2417390, https://doi.org/10.1002/advs.202417390.

    27. [27]

      Q. Chen, Q. Xiao, F. He, W. He, K. Liu, C. Zhao, Z. Chang, H. Wang, Sep. Purif. Technol. 363(2025) 132193, https://doi.org/10.1016/j.seppur.2025.132193.

    28. [28]

      D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay‐Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, R.H. Fink, A. Kahnt, B. Jana, D.M. Guldi, Angew. Chem. Int. Ed. 64(2025) e202418626, https://doi.org/10.1002/anie.202418626.

    29. [29]

      J. Liu, L. Ji, Q. He, S. Zang, J. Sun, H. Yang, T. Dong, T. Liu, H. Wu, X. Chen, Z. Zhong, X. Deng, Sep. Purif. Technol. 363(2025) 132196, https://doi.org/10.1016/j.seppur.2025.132196.

    30. [30]

      Y. Guan, S. Wang, Q. Du, M. Wu, Z. Zheng, Z. Li, S. Yan, J. Colloid Interf. Sci. 624(2022) 168, https://doi.org/10.1016/j.jcis.2022.05.091.

    31. [31]

      N. Sharma, A. Sharma, H.J. Lee, Environ. Chem. Lett. 23(2025) 1061, https://doi.org/10.1007/s10311-025-01831-w.

    32. [32]

      T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, J. Mater. Chem. C 7(2019) 7175, https://doi.org/10.1039/C9TC01640F.

    33. [33]

      Z. Sun, H. Li, A.S. Pittman, Y. Cao, Ceram. Int. 51(2025) 16923, https://doi.org/10.1016/j.ceramint.2025.02.356.

    34. [34]

      L. Zhou, Z. Wu, Z. Li, Y. Zhang, J.M. McGoogan, Q. Li, X. Dong, R. Ren, L. Feng, X. Qi, J. Xi, Y. Cui, W. Tan, G. Shi, G. Wu, W. Xu, X. Wang, J. Ma, X. Su, Z. Feng, G.F. Gao, Clin. Infect. Dis. 72(2021) 332, https://doi.org/10.1093/cid/ciaa725.

    35. [35]

      J. Wang, C. Zhang, X. Zhao, Y. Weng, X. Nan, X. Han, C. Li, B. Liu, Sci. Total Environ. 904(2023) 166808, https://doi.org/10.1016/j.scitotenv.2023.166808.

    36. [36]

      C. Miao, Q. Wang, S. Yang, Y. Tang, X. Liu, S. Lu, Talanta 275(2024) 126070, https://doi.org/10.1016/j.talanta.2024.126070.

    37. [37]

      L. Li, Z. Yang, H. Xiong, M. Ma, R. Zhang, Z. Jiang, ACS Appl. Mater. Interfaces, 17(2025) 15287, https://doi.org/10.1021/acsami.4c18585.

    38. [38]

      Y. Zhong, X. Zhang, Y. Wang, X. Zhang, X. Wang, Appl. Surf. Sci. 639(2023) 158254, https://doi.org/10.1016/j.apsusc.2023.158254.

    39. [39]

      J. Luo, X. Xue, W. Pan, T. Chen, Y. Jian, J. Zeng, W. Dong, Appl. Catal. B: Environ. Energy 375(2025) 125442, https://doi.org/10.1016/j.apcatb.2025.125442.

    40. [40]

      D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. Energy 260(2020) 118222, https://doi.org/10.1016/j.apcatb.2019.118222.

    41. [41]

      Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10(2016) 2745, https://doi.org/10.1021/acsnano.5b07831.

    42. [42]

      S. Li, J. Hu, A.A. Aryee, Y. Sun, Z. Li, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 296(2023) 122659, https://doi.org/10.1016/j.saa.2023.122659.

    43. [43]

      Q. Shi, A. Raza, L. Xu, G. Li, J. Colloid Interface Sci. 625(2022) 750, https://doi.org/10.1016/j.jcis.2022.06.066.

    44. [44]

      J. Shen, M. Yi, X. Yao, H. Zhang, J. Chen, G. Fan, Z. Jiang, Chem. Eng. J. 514(2025) 163170, https://doi.org/10.1016/j.cej.2025.163170.

    45. [45]

      L. Lin, J. Yi, J. Wang, Q. Qian, Q. Chen, C. Cao, W. Zhou, Langmuir 40(2024) 22582, https://doi.org/10.1021/acs.langmuir.4c02124.

    46. [46]

      A.P. Sinitsyn, O.V. Mitkevich, A.V. Gusakov, A.A. Klyosov, Carbohyd. Polym. 10(1989) 1, https://doi.org/10.1016/0144-8617(89)90028-3.

    47. [47]

      B. Guo, X. Lopez‐Lorenzo, Y. Fang, E. Bäckström, A.J. Capezza, S.R. Vanga, I. Furó, M. Hakkarainen, P. Syrén, ChemSusChem 16(2023) e202300742, https://doi.org/10.1002/cssc.202300742.

    48. [48]

      R. Chen, Z. Zhang, Y. Deng, J. Wang, Y. Cui, Y. Zhao, H. Ge, Ind. Eng. Chem. Res. 64(2025) 7915, https://doi.org/10.1021/acs.iecr.5c00311.

    49. [49]

      D. Zhou, L. Wang, F. Zhang, J. Wu, H. Wang, J. Yang, Adv. Sustain. Syst. 6(2022) 2100516, https://doi.org/10.1002/adsu.202100516.

    50. [50]

      M.C. Ariza-Tarazona, C. Siligardi, H.A. Carreón-López, J.E. Valdéz-Cerda, P. Pozzi, G. Kaushik, J.F. Villarreal-Chiu, E.I. Cedillo-González, Mar. Pollut. Bull. 193(2023) 115206, https://doi.org/10.1016/j.marpolbul.2023.115206.

    51. [51]

      D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4(2022) 1094, https://doi.org/10.1007/s42765-022-00149-4.

    52. [52]

      G. Peng, X. Qi, W. Qu, X. Shao, L. Song, P. Du, J. Xiong, Catal. Sci. Technol. 13(2023) 5868, https://doi.org/10.1039/D3CY00815K.

    53. [53]

      W. Qu, L. Song, G. Peng, X. Shao, Y. Wang, P. Du, J. Xiong, Appl. Catal. A: Gen. 693(2025) 120119, https://doi.org/10.1016/j.apcata.2025.120119.

    54. [54]

      V. Blanco-Gutiérrez, P. Li, R. Berzal-Cabetas, A.J.D. santos-García, J. Solid State Chem. 316(2022) 123509, https://doi.org/10.1016/j.jssc.2022.123509.

    55. [55]

      J. Zhang, F. Fan, W. Zhu, W. Yao, F. Zhao, Z. Yang, C. Wang, Y. Wang, J. Mater. Chem. A 12(2024) 19331, https://doi.org/10.1039/D4TA02737J.

    56. [56]

      W. Qu, G. Peng, L. Song, W. Guo, Y. Chen, P. Du, J. Xiong, J. Mater. Chem. C 12(2024) 8837, https://doi.org/10.1039/D4TC01616E.

    57. [57]

      J.M. Musthafa, B.K. Mandal, Opt. Mater. 154(2024) 115701, https://doi.org/10.1016/j.optmat.2024.115701.

    58. [58]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. Energy 272(2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.

    59. [59]

      X. Lian, S. Chen, F. He, S. Dong, E. Liu, H. Li, K. Xu, Sep. Purif. Technol. 286(2022) 120449, https://doi.org/10.1016/j.seppur.2022.120449.

    60. [60]

      Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B: Environ. Energy 220(2018) 290, http://dx.doi.org/10.1016/j.apcatb.2017.08.049.

    61. [61]

      J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4(2014) 954, https://doi.org/10.1021/cs401025u.

    62. [62]

      V. K. Sriramadasu, H. Joshi, S. K. Patro, N. Sharma, A. Singh, S. Pakhira, S. Bhattacharyya, Small 21(2025) 2503321, https://doi.org/10.1002/smll.202503321.

    63. [63]

      Q. Xu, R. He, Y. Li, Acta Phys. -Chim. Sin. 39(2023) 2211009, http://doi.org/10.3866/PKU.WHXB202211009.

    64. [64]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40(2024) 2312024, http://doi.org/10.3866/PKU.WHXB202312024.

    65. [65]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40(2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.

    66. [66]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54(2025) 4874, https://doi.org/10.1039/D4CS01091D.

    67. [67]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9(2025) 328, https://doi.org/10.1038/s41570-025-00698-3.

    68. [68]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40(2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    7. [7]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    8. [8]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    12. [12]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    13. [13]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return