Citation: Renyi Shao, Khurram Abbas, Vladimir Yu. Osipov, Haimei Zhu, Yuan Li, Usama, Hong Bi. Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100134. doi: 10.1016/j.actphy.2025.100134 shu

Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging

  • Carbon dots (CDs) have been widely applied in fluorescence imaging both in vitro and in vivo. However, key challenges remain to be addressed, including the poor specificity of CDs as biological markers and their relatively low fluorescence quantum yield (QY) in the red emission region. In this study, we synthesized red fluorescent carbon dots (designated as EA-CDs, λex/λem = 400 nm/660 nm) using a natural plant-derived precursor ethanol extract from Epipremnum aureum leaves via a one-pot solvothermal method. The EA-CDs exhibit a small particle size (average diameter: 3.9 nm), high fluorescence QY (15.4% in ethanol at λem = 660 nm), low toxicity (both in vitro and in vivo), and favorable lipophilicity (oil-water partition coefficient LogP > 0), making them suitable for biological fluorescence imaging and labeling applications. Experimental results indicate that these red-emitting CDs can not only effectively label plant cell membranes, but also serve as an intestinal fluorescence imaging probe in zebrafish models. This suggests their potential as a universal red-emissive bio-membrane dye with high QY. Furthermore, this work pioneers a novel application approach for ornamental plants like Epipremnum aureum.
  • 加载中
    1. [1]

      W. X. Meng, X. Bai, B. Y. Wang, Z. Y. Liu, S. Y. Lu, B. Yang, Energy Environ. Mater. 2 (2019) 172, https://doi.org/10.1002/eem2.12038.  doi: 10.1002/eem2.12038

    2. [2]

      Y. F. Hu, J. F. Li, X. F. Li, Anal. Bioanal. Chem. 411 (2019) 7879, https://doi.org/10.1007/s00216-019-02192-4.  doi: 10.1007/s00216-019-02192-4

    3. [3]

      P. Singh, V. Bhankar, S. Kumar, K. Kumar, Adv. Colloid Interface Sci. 328 (2024) 103182, https://doi.org/10.1016/j.cis.2024.103182.  doi: 10.1016/j.cis.2024.103182

    4. [4]

      D. Cai, X. Zhong, L. Xu, Y. Xiong, W. Deng, G. Zou, H. Hou, X. Ji, Chem. Sci. 16 (2025) 4937, https://doi.org/10.1039/D4SC08659G.  doi: 10.1039/D4SC08659G

    5. [5]

      C. Z. Liang, X. B. Xie, D. D. Zhang, J. Feng, S. Y. Lu, Q. S. Shi, J. Mater. Chem. B 9 (2021) 5670, https://doi.org/10.1039/D0TB02979C.  doi: 10.1039/D0TB02979C

    6. [6]

      H. K. Kohli, D. Parab, Next Mater. 8 (2025) 100527, https://doi.org/10.1016/j.nxmate.2025.100527.  doi: 10.1016/j.nxmate.2025.100527

    7. [7]

      X. Y. Kou, Y. G. Cong, W. F. Dong, L. Li, Mater. Des. 240 (2024) 112855, https://doi.org/10.1016/j.matdes.2024.112855.  doi: 10.1016/j.matdes.2024.112855

    8. [8]

      B. Unnikrishnan, A. Anand, C. J. Lin, C. Y. Lee, A. Nain, P. Srivastava, R. S. Wu, H. W. Chu, C. Y. Wang, R. H. Shi, et al., Coord. Chem. Rev. 534 (2025) 216552, https://doi.org/10.1016/j.ccr.2025.216552.  doi: 10.1016/j.ccr.2025.216552

    9. [9]

      F. Qin, J. L. Bai, Y. Q. Zhu, P. Y. He, X. Y. Wang, S. Wu, X. Yu, L. L. Ren, Phys. Chem. Chem. Phys. 25 (2023) 2762, https://doi.org/10.1039/d2cp05130c.  doi: 10.1039/d2cp05130c

    10. [10]

      L. J. Yang, Y. B. An, D. Z. Xu, F. Dai, S. L. Shao, Z. X. Lu, G. Liu, Small 20 (2024) 2309293, https://doi.org/10.1002/smll.202309293.  doi: 10.1002/smll.202309293

    11. [11]

      M. H. Usman, S. Cheng, Engineering 5 (2024) 2223, https://doi.org/10.3390/eng5030116.  doi: 10.3390/eng5030116

    12. [12]

      J. J. Lin, W. Y. Huang, H. R. Zhang, X. J. Zhang, Y. L. Liu, W. Li, B. F. Lei, J. Mater. Chem. C 12 (2024) 5480, https://doi.org/10.1039/d4tc00107a.  doi: 10.1039/d4tc00107a

    13. [13]

      F. H. Wang, X. Z. Dong, Y. J. Zuo, Z. Xie, R. F. Guan, Mater. Today Phys. 41 (2024) 101332, https://doi.org/10.1016/j.mtphys.2024.101332.  doi: 10.1016/j.mtphys.2024.101332

    14. [14]

      Y. P. Liu, J. H. Lei, G. Wang, Z. M. Zhang, J. Wu, B. H. Zhang, H. Q. Zhang, E. S. Liu, L. M. Wang, T. M. Liu, et al., Adv. Sci. 9 (2022) 2202283, https://doi.org/10.1002/advs.202202283.  doi: 10.1002/advs.202202283

    15. [15]

      Y. P. Liu, H. Wang, S. N. Qu, Chin. Chem. Lett. 36 (2025) 110618, https://doi.org/10.1016/j.cclet.2024.110618.  doi: 10.1016/j.cclet.2024.110618

    16. [16]

      X. Wu, Y. P. Liu, B. Z. Wang, L. Y. Li, Z. J. Li, Q. C. Wang, Q. S. Cheng, G. C. Xing, S. N. Qu, Acta Phys. -Chim. Sin. 41 (2025) 100109, https://doi.org/10.1016/j.actphy.2025.100109.  doi: 10.1016/j.actphy.2025.100109

    17. [17]

      J. J. Liu, Y. J. Geng, D. W. Li, H. Yao, Z. P. Huo, Y. F. Li, K. Zhang, S. J. Zhu, H. T. Wei, W. Q. Xu, J. L. Jiang, B. Yang, Adv. Mater. 32 (2020) 1906641, https://doi.org/10.1002/adma.201906641.  doi: 10.1002/adma.201906641

    18. [18]

      H. L. Yang, L. F. Bai, Z. R. Geng, H. Chen, L. T. Xu, Y. C. Xie, D. J. Wang, H. W. Gu, X. M. Wang, Mater. Today Adv. 18 (2023) 100376, https://doi.org/10.1016/j.mtadv.2023.100376.  doi: 10.1016/j.mtadv.2023.100376

    19. [19]

      J. Liu, T. Y. Kong, H. M. Xiong, Adv. Mater. 34 (2022) 2200152, https://doi.org/10.1002/adma.202200152.  doi: 10.1002/adma.202200152

    20. [20]

      L. Jiang, H. Cai, W. W. Zhou, Z. J. Li, L. Zhang, H. Bi, Adv. Mater. 35 (2023) 2210776, https://doi.org/10.1002/adma.202210776.  doi: 10.1002/adma.202210776

    21. [21]

      R. J. Chen, Z. B. Wang, T. Pang, Q. Teng, C. H. Li, N. Z. Jiang, S. Zheng, R. D. Zhang, Y. H. Zheng, D. Q. Chen, F. L. Yuan, Adv. Mater. 35 (2023) 2302275, https://doi.org/10.1002/adma.202302275.  doi: 10.1002/adma.202302275

    22. [22]

      Q. Fu, K. L. Zhang, K. Z. Lu, N. Li, S. H. Sun, Z. H. Dong, J. Alloys Compd. 971 (2024) 172688, https://doi.org/10.1016/j.jallcom.2023.172688.  doi: 10.1016/j.jallcom.2023.172688

    23. [23]

      W. X. Qin, M. Y. Wang, Y. Li, L. C. Li, K. Abbas, Z. J. Li, A. C. Tedesco, H. Bi, Mater. Chem. Front. 8 (2024) 930, https://doi.org/10.1039/d3qm00968h.  doi: 10.1039/d3qm00968h

    24. [24]

      H. Cai, Y. Li, X. Y. Wu, Y. X. Yang, A. C. Tedesco, Z. J Li, H. Bi, Adv. Funct. Mater. 34 (2024) 2406096, https://doi.org/10.1002/adfm.202406096.  doi: 10.1002/adfm.202406096

    25. [25]

      J. Chen, T. Li, C. Z. Lin, Y. X. Hou, S. H. Cheng, B. M. Gao, Spectrochim. Acta 328 (2025) 125458, https://doi.org/10.1016/j.saa.2024.125458.  doi: 10.1016/j.saa.2024.125458

    26. [26]

      C. Hu, S. Sedghi, A. S. Albero, G. G. Andersson, A. Sharma, P. Pendleton, F. R. Reinoso, K. Kaneko, M. J. Biggs, Carbon 85 (2015) 147, https://doi.org/10.1016/j.carbon.2014.12.098.  doi: 10.1016/j.carbon.2014.12.098

    27. [27]

      V. Y. Osipov, A. V. Baranov, V. A. Ermakov, T. L. Makarova, L. F. Chungong, A. I. Shames, K. Takai, T. Enoki, Y. Kaburagi, M. Endo, et al., Diam. Relat. Mater. 20 (2011) 205, https://doi.org/10.1016/j.diamond.2010.12.006.  doi: 10.1016/j.diamond.2010.12.006

    28. [28]

      B. Y. Wang, J. Li, Z. Y. Tang, B. Yang, S. Y. Lu, Sci. Bull. 64 (2019) 1285, https://doi.org/10.1016/j.scib.2019.07.021.  doi: 10.1016/j.scib.2019.07.021

    29. [29]

      J. L. Pu, C. Liu, B. Wang, P. Liu, Y. Z. Jin, J. C. Chen, Analyst 146 (2021) 1032, https://doi.org/10.1039/d0an02075c.  doi: 10.1039/d0an02075c

    30. [30]

      M. L. Liu, B. B. Chen, C. M. Li, C. Z. Huang, Green Chem. 21 (2019) 449, https://doi.org/10.1039/c8gc02736f.  doi: 10.1039/c8gc02736f

    31. [31]

      B. Krushna, S. Sharma, A. Srinivasan, S. Sahu, K. Ponnazhagan, A. George, K. Rathla, M. Manjula, V. Shivakumar, S. Devaraja, et al., Colloids Surf. 703 (2024) 135135, https://doi.org/10.1016/j.colsurfa.2024.135135.  doi: 10.1016/j.colsurfa.2024.135135

    32. [32]

      J. K Yu, X. Yong, Z. Y. Tang, B. Yang, S. Y. Lu, J. Phys. Chem. Lett. 12 (2021) 7671, https://doi.org/10.1021/acs.jpclett.1c01856.  doi: 10.1021/acs.jpclett.1c01856

    33. [33]

      H. Ding, X. X. Zhou, J. S. Wei, X. B. Li, B. T. Qin, X. B. Chen, H. M. Xiong, Carbon 167 (2020) 322, https://doi.org/10.1016/j.carbon.2020.06.024.  doi: 10.1016/j.carbon.2020.06.024

    34. [34]

      D. Benner, P. K. Yadav, D. Bhatia, Nanoscale Adv. 5 (2023) 4337, https://doi.org/10.1039/d3na00469d.  doi: 10.1039/d3na00469d

    35. [35]

      H. X. Li, D. D. Su, H. Gao, X. Yan, D. S. Kong, R. Jin, X. M. Liu, C. G. Wang, G. Y. Lu, Anal. Chem. 92 (2020) 3198, https://doi.org/10.1021/acs.analchem.9b04917.  doi: 10.1021/acs.analchem.9b04917

    36. [36]

      Q. Xu, T. R. Kuang, Y. Liu, L. L. Cai, X. F. Peng, T. S. Sreeprasad, P. Zhao, Z. Q. Yu, N. Li, J. Mater. Chem. B 4 (2016) 7204, https://doi.org/10.1039/c6tb02131j.  doi: 10.1039/c6tb02131j

    37. [37]

      K. Abbas, Usama, W. X. Qin, H. M. Zhu, Y. Li, Z. J. Li, M. Imran, H. Bi, CBMI (2025), https://doi.org/10.1021/cbmi.4c00109.  doi: 10.1021/cbmi.4c00109

    38. [38]

      A. Maholiya, P. Ranjan, R. Khan, S. Murali, R. C. Nainwal, P. S. Chauhan, N. Sathish, J. P. Chaurasia, A. K. Srivastava, Environ. Sci. Nano 10 (2023) 959, https://doi.org/10.1039/d2en00954d.  doi: 10.1039/d2en00954d

    39. [39]

      Y. Liu, W. D. Li, H. Wu, S. Y. Lu, Acta Phys. -Chim. Sin. 37 (2021) 2009082, https://doi.org/10.3866/PKU.WHXB202009082.  doi: 10.3866/PKU.WHXB202009082

    40. [40]

      Z. Q. Zhang, H. M. Zhu, N. N. Peng, J. Song, R. J. Sun, J. M. Wang, F. F. Zhu, Y. Z. Wang, Mater. Lett. 341 (2023) 134233, https://doi.org/10.1016/j.matlet.2023.134233.  doi: 10.1016/j.matlet.2023.134233

    41. [41]

      J. Q. Chang, H. M. Xu, W. J. Xie, Y. Zhang, L. Qi, L. Z. Fan, Y. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301034, https://doi.org/10.3866/PKU.WHXB202301034.  doi: 10.3866/PKU.WHXB202301034

    42. [42]

      N. K. Dal, M. Speth, K. Johann, M. Barz, C. Beauvineau, J. Wohlmann, F. Fenaroli, B. Gicquel, G. Griffiths, N. A. Rodriguez, Dis. Model. Mech. 15 (2022) dmm049147, https://doi.org/10.1242/dmm.049147.  doi: 10.1242/dmm.049147

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    5. [5]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    10. [10]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    11. [11]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    12. [12]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    13. [13]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    14. [14]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return