分子筛介导的氧化铟催化剂用于增强光催化CO2加氢

管勤辉 郭昱昊 李娜 李敬 颜廷江

引用本文: 管勤辉, 郭昱昊, 李娜, 李敬, 颜廷江. 分子筛介导的氧化铟催化剂用于增强光催化CO2加氢[J]. 物理化学学报, 2025, 41(11): 100133. doi: 10.1016/j.actphy.2025.100133 shu
Citation:  Qinhui Guan, Yuhao Guo, Na Li, Jing Li, Tingjiang Yan. Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100133. doi: 10.1016/j.actphy.2025.100133 shu

分子筛介导的氧化铟催化剂用于增强光催化CO2加氢

    通讯作者: 李娜, lina20201130@163.com; 颜廷江, tingjiangn@163.com
  • 基金项目:

    国家自然科学基金 22172086

    国家自然科学基金 22105117

    山东省泰山学者计划 tsqn202103064

    山东省重大基础研究项目 ZR2021ZD06

摘要: 在光催化CO2加氢领域,光生载流子的吸附-脱附行为及其动力学特性是影响光催化反应动力学过程与整体效率的关键因素。本文通过简便的浸渍-煅烧法制备了5A分子筛功能化的In2O3复合材料(记为IO@5A-xwt%)。其中,经5A分子筛负载量优化的IO@5A-5wt%复合材料在光催化CO2转化为CO的反应中表现出色,CO生成速率达到2610.55 μmol·g−1·h−1,为原始In2O3的19倍。此外,IO@5A-5wt%复合材料在经过持续45 h、总计108次循环的长时间测试后仍保持可接受的催化稳定性。一系列全面的表征技术和性能评估表明,5A分子筛的引入显著调节了光催化反应中的吸附-脱附行为和空穴动力学。5A分子筛的多通道结构具有合适的孔径,有效增强了CO2的吸附。同时,5A分子筛的表面羟基促进了光生空穴的转移,从而抑制了光生载流子的复合。此外,反应产物H2O更容易从催化剂表面脱附。这些协同效应共同构成了IO@5A-5wt%复合材料光催化性能增强的关键机制。

English

    1. [1]

      Q. H. Guan, W. G. Ran, D. P. Zhang, W. J. Li, N. Li, B. B. Huang, T. J. Yan, Adv. Sci. 11 (2024) 2401990, https://doi.org/10.1002/advs.202401990. doi: 10.1002/advs.202401990

    2. [2]

      T. T. Kong, Y. W. Jiang, Y. J. Xiong, Chem. Soc. Rev. 49 (2020) 6579, https://doi.org/10.1039/c9cs00920e. doi: 10.1039/c9cs00920e

    3. [3]

      H. Y. Xu, Z. L. Wang, H. H. Liao, D. M. Li, J. N. Shen, J. L. Long, W. X. Dai, X. X. Wang, Z. Z. Zhang, Appl. Catal. B 336 (2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935. doi: 10.1016/j.apcatb.2023.122935

    4. [4]

      L. O. Paulista, A. F. P. Ferreira, A. E. Rodrigues, R. J. E. Martins, R. A. R. Boaventura, V. J. P. Vilar, T. F. C. V. Silva, J. Environ. Chem. Eng. 12 (2024) 112418, https://doi.org/10.1016/j.jece.2024.112418. doi: 10.1016/j.jece.2024.112418

    5. [5]

      Y. J. An, W. X. Liu, Y. F. Zhang, J. J. Zhang, Z. S. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/pku.whxb202407021. doi: 10.3866/pku.whxb202407021

    6. [6]

      J. Y. Qin, Y. J. An, Y. F. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/pku.Whxb202408002. doi: 10.3866/pku.Whxb202408002

    7. [7]

      X. Y. Miao, H. Yang, J. He, J. Wang, Z. L. Jin, Acta Phys. -Chim. Sin. 41 (2025) 100051, https://doi.org/10.1016/j.actphy.2025.100051. doi: 10.1016/j.actphy.2025.100051

    8. [8]

      H. X. Mai, T. C. Le, D. H. Chen, D. A. Winkler, R. A. Caruso, Chem. Rev. 122 (2022) 13478, https://doi.org/10.1021/acs.chemrev.2c00061. doi: 10.1021/acs.chemrev.2c00061

    9. [9]

      P. Wang, H. T. Li, Y. J. Cao, H. G. Yu, Acta Phys. -Chim. Sin. 37 (2020) 2008047, https://doi.org/10.3866/pku.whxb202008047. doi: 10.3866/pku.whxb202008047

    10. [10]

      Q. L. Xu, Z. H. Xia, J. M. Zhang, Z. Y. Wei, Q. Guo, H. L. Jin, H. Tang, S. Z. Li, X. C. Pan, Z. Su, et al., Carbon Energy 5 (2022) e205, https://doi.org/10.1002/cey2.205. doi: 10.1002/cey2.205

    11. [11]

      H. L. Ran, X. Liu, L. H. Ye, J. J. Fan, B. C. Zhu, Q. L. Xu, Y. C. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089. doi: 10.1016/j.jmst.2024.12.089

    12. [12]

      G. R. Yu, N. Li, X. Li, Y. H. Guo, T. J. Yan, J. Mater. Chem. A (2025)https://doi.org/10.1039/d5ta01792k. doi: 10.1039/d5ta01792k

    13. [13]

      X. Y. Meng, C. Peng, J. P. Jia, P. Liu, Y. L. Men, Y. X. Pan, J. CO2 Util. 55 (2022) 101844, https://doi.org/10.1016/j.jcou.2021.101844. doi: 10.1016/j.jcou.2021.101844

    14. [14]

      X. D. Li, Y. F. Sun, J. Q. Xu, Y. J. Shao, J. Wu, X. L. Xu, Y. Pan, H. X. Ju, J. F. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1. doi: 10.1038/s41560-019-0431-1

    15. [15]

      K. C. Wang, Y. M. Zhu, M. Gu, Z. W. Hu, Y. C. Chang, C. W. Pao, Y. Xu, X. Q. Huang, Adv. Funct. Mater. 33 (2023) 2215148, https://doi.org/10.1002/adfm.202215148. doi: 10.1002/adfm.202215148

    16. [16]

      W. J. Li, Y. P. Zhang, Y. H. Wang, W. G. Ran, Q. H. Guan, W. C. Yi, L. L. Zhang, D. P. Zhang, N. Li, T. J. Yan, Appl. Catal. B 340 (2024) 123267, https://doi.org/10.1016/j.apcatb.2023.123267. doi: 10.1016/j.apcatb.2023.123267

    17. [17]

      Y. P. Zhang, W. J. Li, F. Tian, N. Cai, Q. H. Guan, D. P. Zhang, W. G. Ran, N. Li, T. J. Yan, Chem. Eng. J. 477 (2023) 147129, https://doi.org/10.1016/j.cej.2023.147129. doi: 10.1016/j.cej.2023.147129

    18. [18]

      J. D. Li, Y. Qu, Y. D. Liu, L. Q. Jiang, Sep. Purif. Technol. 354 (2025) 128761, https://doi.org/10.1016/j.seppur.2024.128761. doi: 10.1016/j.seppur.2024.128761

    19. [19]

      B. W. Deng, H. Song, Q. Wang, J. N. Hong, S. Song, Y. W. Zhang, K. Peng, H. W. Zhang, T. Kako, J. H. Ye, Appl. Catal. B 327 (2023) 122471, https://doi.org/10.1016/j.apcatb.2023.122471. doi: 10.1016/j.apcatb.2023.122471

    20. [20]

      Y. H. Guo, Q. H. Guan, X. J. Li, M. J. Zhao, N. Li, Z. Z. Zhang, G. Q. Fei, T. J. Yan, Energy Environ. Sci. (2025) 5539, https://doi.org/10.1039/d5ee00605h. doi: 10.1039/d5ee00605h

    21. [21]

      X. J. Li, Y. H. Guo, Q. H. Guan, X. Li, L. L Zhang, W. G. Ran, N. Li, T. J. Yan, Chinese J. Catal. 69 (2025) 303, https://doi.org/10.1016/s1872-2067(24)60205-6. doi: 10.1016/s1872-2067(24)60205-6

    22. [22]

      S. Tang, Z. D. Feng, Z. Han, F. Sha, C. Z. Tang, Y. Zhang, J. J. Wang, C. Li, J. Catal. 417 (2023) 462, https://doi.org/10.1016/j.jcat.2022.12.026. doi: 10.1016/j.jcat.2022.12.026

    23. [23]

      Y. X. Yang, C. Y. Shen, K. H. Sun, D. H. Mei, C. J. Liu, ACS Catal. 13 (2023) 6154, https://doi.org/10.1021/acscatal.2c06299. doi: 10.1021/acscatal.2c06299

    24. [24]

      T. J. Yan, N. Li, L. L. Wang, W. G. Ran, P. N. Duchesne, L. L. Wan, N. T. Nguyen, L. Wang, M. K. Xia, G. A. Ozin, Nat. Commun. 11 (2020) 6095, https://doi.org/10.1038/s41467-020-19997-y. doi: 10.1038/s41467-020-19997-y

    25. [25]

      T. J. Yan, N. Li, L. L. Wang, Q. Liu, F. M. Ali, L. Wang, Y. F. Xu, Y. Liang, Y. Dai, B. B. Huang, et al., Energy Environ. Sci. 13 (2020) 3054, https://doi.org/10.1039/d0ee01124j. doi: 10.1039/d0ee01124j

    26. [26]

      Y. C. Shi, W. G. Su, X. Y. Wei, X. D. Song, Y. H. Bai, J. F. Wang, P. Lv, G. S. Yu, Fuel 334 (2023) 126811, https://doi.org/10.1016/j.fuel.2022.126811. doi: 10.1016/j.fuel.2022.126811

    27. [27]

      R. P. Ye, J. Ding, T. R. Reina, M. S. Duyar, H. T. Li, W. H. Luo, R. B. Zhang, M. H. Fan, G. Feng, J. Sun, et al., Nat. Synth. 4 (2025) 288, https://doi.org/10.1038/s44160-025-00747-1. doi: 10.1038/s44160-025-00747-1

    28. [28]

      Y. R. Wang, R. T. Yang, ACS Sustain. Chem. Eng. 7 (2019) 3301, https://doi.org/10.1021/acssuschemeng.8b05339. doi: 10.1021/acssuschemeng.8b05339

    29. [29]

      T. Boonamnuay, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Int. J. Hydrogen Energy 46 (2021) 30948, https://doi.org/10.1016/j.ijhydene.2021.04.161. doi: 10.1016/j.ijhydene.2021.04.161

    30. [30]

      D. G. Boer, J. Langerak, P. P. Pescarmona, ACS Appl. Energy Mater. 6 (2023) 2634, https://doi.org/10.1021/acsaem.2c03605. doi: 10.1021/acsaem.2c03605

    31. [31]

      Y. S. González, C. Costa, M. C. Márquez, P. Ramos, J. Hazard. Mater. 187 (2011) 101, https://doi.org/10.1016/j.jhazmat.2010.12.121. doi: 10.1016/j.jhazmat.2010.12.121

    32. [32]

      Z. H. Cui, P. Wang, Y. Q. Wu, X. L. Liu, G. Q. Chen, P. Gao, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, H. F. Cheng, et al., Appl. Catal. B 310 (2022) 121375, https://doi.org/10.1016/j.apcatb.2022.121375. doi: 10.1016/j.apcatb.2022.121375

    33. [33]

      X. H. Yang, X. B. Bian, P. X. Wang, H. Y. Wang, Q. J. Qi, J. Environ. Chem. Eng. 13 (2025) 115004, https://doi.org/10.1016/j.jece.2024.115004. doi: 10.1016/j.jece.2024.115004

    34. [34]

      W. L. Yu, X. You, Y. C. Wu, C. P. Li, Q. Y. Wang, X. H. Yang, X. B. Bian, Y. Lu, J. Environ. Chem. Eng. 13 (2025) 116271, https://doi.org/10.1016/j.jece.2025.116271. doi: 10.1016/j.jece.2025.116271

    35. [35]

      J. A. D. Dobladez, V. I. Á. Maté, S. Á. Torrellas, M. Larriba, G. P. Muñoz, R. A. Sánchez, Sep. Purif. Technol. 262 (2021) 118292, https://doi.org/10.1016/j.seppur.2020.118292. doi: 10.1016/j.seppur.2020.118292

    36. [36]

      B. Srinivas, B. Shubhamangala, K. Lalitha, P. A. K. Reddy, V. D. Kumari, M. Subrahmanyam, B. R. De, Photochem. Photobiol. 87 (2011) 995, https://doi.org/10.1111/j.1751-1097.2011.00946.x. doi: 10.1111/j.1751-1097.2011.00946.x

    37. [37]

      R. Ahlawat, N. Rani, B. Goswami, N. Jangra, G. Rani, J. Alloys Compd. 995 (2024) 174858, https://doi.org/10.1016/j.jallcom.2024.174858. doi: 10.1016/j.jallcom.2024.174858

    38. [38]

      X. P. Liu, R. Wang, J. Hazard. Mater. 362 (2017) 157, https://doi.org/10.1016/j.jhazmat.2016.12.030. doi: 10.1016/j.jhazmat.2016.12.030

    39. [39]

      Q. H. Guan, Y. H. Guo, S. T. Li, X. J. Li, X. Li, X. Liu, N. Li, T. J. Yan, Sci. China Chem. (2025)https://doi.org/10.1007/s11426-025-2860-7. doi: 10.1007/s11426-025-2860-7

    40. [40]

      Z. Lu, Y. F. Xu, Z. S. Zhang, J. C. Sun, X. Ding, W. Sun, W. G. Tu, Y. Zhou, Y. F. Yao, G. A. Ozin, et al., J. Am. Chem. Soc. 145 (2023) 26052, https://doi.org/10.1021/jacs.3c07349. doi: 10.1021/jacs.3c07349

    41. [41]

      A. Desgagnés, M. C. Iliuta, Chem. Eng. J. 454 (2023) 140214, https://doi.org/10.1016/j.cej.2022.140214. doi: 10.1016/j.cej.2022.140214

    42. [42]

      X. Chen, Q. Geng, J. F. Liu, Z. X. Ding, W. X. Dai, X. X. Wang, Acta Phys. -Chim. Sin. 25 (2009) 2237, https://doi.org/10.3866/pku.Whxb20091036. doi: 10.3866/pku.Whxb20091036

    43. [43]

      L. Wang, M. Ghoussoub, H. Wang, Y. Shao, W. Sun, A. A. Tountas, T. E. Wood, H. Li, J. Y. Y. Loh, Y. C. Dong, et al., Joule 2 (2018) 1369, https://doi.org/10.1016/j.joule.2018.03.007. doi: 10.1016/j.joule.2018.03.007

    44. [44]

      K. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc. 138 (2016) 1206, https://doi.org/10.1021/jacs.5b10179. doi: 10.1021/jacs.5b10179

    45. [45]

      K. K. Ghuman, L. B. Hoch, T. E. Wood, C. Mims, C. V. Singh, G. A. Ozin. ACS Catal. 6 (2016) 5764, https://doi.org/10.1021/acscatal.6b01015. doi: 10.1021/acscatal.6b01015

    46. [46]

      Q. H. Guan, C. Z. Ni, T. J. Yan, N. Li, L. Wang, Z. Lu, W. G. Ran, Y. P. Zhang, W. J. Li, L. L. Zhang, et al., EES Catal. 2 (2024) 573, https://doi.org/10.1039/d3ey00261f. doi: 10.1039/d3ey00261f

    47. [47]

      W. X. Yang, J. F. Zhang, Q. L. Xu, Y. Yang, L. J. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.Whxb202312014. doi: 10.3866/pku.Whxb202312014

    48. [48]

      X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031. doi: 10.3866/pku.Whxb202309031

    49. [49]

      J. X. Cai, W. D. Xu, H. Q. Chi, Q. Liu, W. Gao, L. Shi, J. X. Low, Z. G. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/pku.Whxb202407002. doi: 10.3866/pku.Whxb202407002

    50. [50]

      W. J. Li, Y. J. Wang, Y. P. Zhang, Y. N. Pan, M. L. Xu, Y. Song, N. Li, T. J. Yan, Langmuir 39 (2023) 4140, https://doi.org/10.1021/acs.langmuir.3c00042. doi: 10.1021/acs.langmuir.3c00042

    51. [51]

      L. Y. Zhang, J. J Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    52. [52]

      J. T. Yan, J. J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    53. [53]

      Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/pku.Whxb202406027. doi: 10.3866/pku.Whxb202406027

    54. [54]

      J. Tang, X. H. Li, Y. F. Ma, K. Q. Wang, Z. L. Liu, Q. T. Zhang, Appl. Catal. B 327 (2023) 122417, https://doi.org/10.1016/j.apcatb.2023.122417. doi: 10.1016/j.apcatb.2023.122417

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  136
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-16
  • 接受日期:  2025-07-20
  • 修回日期:  2025-07-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章