微波合成铜负载的碳掺杂氮化硼光催化材料及其大气浓度下CO2还原性能研究

马浩桐 衡明宇 许杨 毕炜 缪应纯 肖舒宁

引用本文: 马浩桐, 衡明宇, 许杨, 毕炜, 缪应纯, 肖舒宁. 微波合成铜负载的碳掺杂氮化硼光催化材料及其大气浓度下CO2还原性能研究[J]. 物理化学学报, 2025, 41(11): 100132. doi: 10.1016/j.actphy.2025.100132 shu
Citation:  Haotong Ma, Mingyu Heng, Yang Xu, Wei Bi, Yingchun Miao, Shuning Xiao. Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction[J]. Acta Physico-Chimica Sinica, 2025, 41(11): 100132. doi: 10.1016/j.actphy.2025.100132 shu

微波合成铜负载的碳掺杂氮化硼光催化材料及其大气浓度下CO2还原性能研究

    通讯作者: 缪应纯, ; 肖舒宁,
  • 基金项目:

    国家自然科学基金 22106105

    国家自然科学基金 22406130

    国家自然科学基金 22408229

    上海市科技创新行动 22YF1430400

    上海市科技创新行动 21DZ1206300

    云南省高校协同创新中心(曲靖绿色光伏产业协同创新中心) 

    云南省科技厅科技人才与平台计划(云南省李和兴专家工作站) 202305AF150088

    云南省科技厅科技人才与平台计划项目(云南省施正荣院士工作站) 202405AF140016

摘要: 在大气浓度下进行光催化CO2还原极具挑战性,但对于实现碳中和技术应用却至关重要。本研究通过微波辅助熔盐法合成了一种负载铜(Cu)的碳(C)掺杂氮化硼(Cu/BCN)光催化剂。该方法能够同时将C引入BN晶格并选择性负载Cu纳米颗粒,形成高效的异质结构。C掺杂与Cu负载之间的协同作用调节了能带结构,增强了可见光吸收,促进了电荷分离,并改善了CO2吸附。优化后的Cu/BCN光催化剂在环境CO2条件下实现了30.62 μmol·g−1·h−1的CO产率,选择性为95.8%。结合实验和DFT分析证实,Cu/BCN界面促进了电荷转移,并降低了*COOH形成的能垒。这项工作展示了直接从空气中高效利用CO2的有前景途径,为大气中的碳转化提供了一种可扩展的策略。

English

    1. [1]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7 doi: 10.1038/s41467-024-49004-7

    2. [2]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3 doi: 10.1038/s41570-025-00698-3

    3. [3]

      K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun. 16 (2025) 2094, https://doi.org/10.1038/s41467-025-57140-x doi: 10.1038/s41467-025-57140-x

    4. [4]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672 doi: 10.1002/anie.202414672

    5. [5]

      P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095 doi: 10.1021/acscatal.3c03095

    6. [6]

      W. Hou, H. Guo, M. Wu, L. Wang, ACS Nano 17 (2023) 20560-20569, https://doi.org/10.1021/acsnano.3c07411 doi: 10.1021/acsnano.3c07411

    7. [7]

      J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009 doi: 10.1016/j.mattod.2019.06.009

    8. [8]

      M. Heng, H. Shao, J. Sun, Q. Huang, S. Shen, G. Yang, Y. Xue, S. Xiao, Rare Met. 44 (2024) 1108, https://doi.org/10.1007/s12598-024-03000-4 doi: 10.1007/s12598-024-03000-4

    9. [9]

      Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x doi: 10.1038/s41467-023-41943-x

    10. [10]

      J. Guo, H. Ma, H. Shang, W. Wang, R. Yang, S. Wang, Y. Miao, D. Phillips, G. Li, S. Xiao, J. Hazard. Mater. 492 (2025) 138060, https://doi.org/10.1016/j.jhazmat.2025.138060 doi: 10.1016/j.jhazmat.2025.138060

    11. [11]

      H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019 doi: 10.1016/j.mattod.2024.12.019

    12. [12]

      J. Pu, K. Zhang, Z. Wang, C. Li, K. Zhu, Y. Yao, G. Hong, Adv. Funct. Mater. 31 (2021) 2106315, https://doi.org/10.1002/adfm.202106315 doi: 10.1002/adfm.202106315

    13. [13]

      Y. Wang, S. Xia, K. Chen, J. Zhang, H. Tan, C. Yu, J. Cui, J. Zeng, J. Wu, P. Wang, et al., ACS Nano. 18 (2024) 34403, https://doi.org/10.1021/acsnano.4c14039 doi: 10.1021/acsnano.4c14039

    14. [14]

      T. Yuan, Z. Wu, S. Zhai, R. Wang, S. Wu, J. Cheng, M. Zheng, X. Wang, T. Yuan, Z. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304861, https://doi.org/10.1002/anie.202304861 doi: 10.1002/anie.202304861

    15. [15]

      J. Ji, S. Yan, Z. Zhou, Y. Gu, C. Liu, S. Yang, D. Wang, Y. Xue, C. Tang, J. Mater. Sci. Technol. 218 (2025) 170, https://doi.org/10.1016/j.jmst.2024.07.051 doi: 10.1016/j.jmst.2024.07.051

    16. [16]

      H. Chen, C. Xiong, J. Moon, A. Ivanov, W. Lin, T. Wang, J. Fu, D. Jiang, Z. Wu, Z. Yang, et al., J. Am. Chem. Soc. 144 (2022) 10688, https://doi.org/10.1021/jacs.2c00343 doi: 10.1021/jacs.2c00343

    17. [17]

      C. Sathish, G. Kothandam, P. Selvarajan, Z. Lei, J. Lee, J. Qu, A. Al Muhtaseb, X. Yu, M. Breese, R. Zheng, et al., Adv. Sci. 9 (2022) 2105603, https://doi.org/10.1002/advs.202105603 doi: 10.1002/advs.202105603

    18. [18]

      H. Ou, Y. Jin, B. Chong, J. Bao, S. Kou, H. Li, Y. Li, X. Yan, B. Lin, G. Yang, Adv. Mater. 36 (2024) 2404851, https://doi.org/10.1002/adma.202404851 doi: 10.1002/adma.202404851

    19. [19]

      L. Duan, B. Wang, K. Heck, C. Clark, J. Wei, M. Wang, J. Metz, G. Wu, A. Tsai, S. Guo, et al., Chem. Eng. J. 448 (2022) 137735, https://doi.org/10.1016/j.cej.2022.137735 doi: 10.1016/j.cej.2022.137735

    20. [20]

      J. Liang, W. Zhang, Z. Liu, Q. Song, Z. Zhu, Z. Guan, H. Wang, P. Zhang, J. Li, M. Zhou, et al., ACS Catal. 12 (2022) 12217, https://doi.org/10.1021/acscatal.2c03970 doi: 10.1021/acscatal.2c03970

    21. [21]

      C. Zhou, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, M. Chen, J. Wang, et al., Appl. Catal. B Environ. 238 (2018) 6, https://doi.org/10.1016/j.apcatb.2018.07.011 doi: 10.1016/j.apcatb.2018.07.011

    22. [22]

      S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J, Mater. Sci. Technol. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J doi: 10.1039/C7TA08515J

    23. [23]

      W. Xie, K. Li, X. Liu, X. Zhang, H. Huang, Adv. Mater. 35 (2023) 2208132, https://doi.org/10.1002/adma.202208132 doi: 10.1002/adma.202208132

    24. [24]

      J. Jiang, Q. Song, H. Zhang, Z. Liu, Y. Li, Z. Jiang, X. Lou, C. Lee, Angew. Chem. Int. Ed. 63 (2024) e202318236, https://doi.org/10.1002/anie.202318236 doi: 10.1002/anie.202318236

    25. [25]

      S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J. Mater. Chem. A. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J doi: 10.1039/C7TA08515J

    26. [26]

      S. Hu, P. Qiao, X. Yi, Y. Lei, H. Hu, J. Ye, D. Wang, Angew. Chem. Int. Ed. 62 (2023) e202304585, https://doi.org/10.1002/anie.202304585 doi: 10.1002/anie.202304585

    27. [27]

      J. Guo, Y. Duan, T. Wu, W. Zhang, L. Wang, Y. Zhang, Q. Luo, Q. Lu, Y. Zhang, H. Mu, et al., Appl. Catal. B Environ. 324 (2023) 122235, https://doi.org/10.1016/j.apcatb.2022.122235 doi: 10.1016/j.apcatb.2022.122235

    28. [28]

      D. Chen, S. Mu, Adv. Mater. 36 (2024) 2408285, https://doi.org/10.1002/adma.202408285 doi: 10.1002/adma.202408285

    29. [29]

      M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. J. Du, L. Wang, Angew. Chem. Int. Ed. 132 (2020) 7297, https://doi.org/10.1002/ange.202001148 doi: 10.1002/ange.202001148

    30. [30]

      S. Gupta, Y. Mao, Prog. Mater. Sci. 117 (2021) 100734, https://doi.org/10.1016/j.pmatsci.2020.100734 doi: 10.1016/j.pmatsci.2020.100734

    31. [31]

      Z. Pang, G. Li, X. Xiong, L. Ji, Q. Xu, X. Zou, X. Lu, J. Energy Chem. 61 (2021) 622, https://doi.org/10.1016/j.jechem.2021.02.020 doi: 10.1016/j.jechem.2021.02.020

    32. [32]

      N. Díez, A. Fuertes, M. Sevilla, Energy Storage Mater. 38 (2021) 50, https://doi.org/10.1016/j.ensm.2021.02.048 doi: 10.1016/j.ensm.2021.02.048

    33. [33]

      Z. Zhao, H. Li, X. Gao, Chem. Rev. 124 (2023) 2651, https://doi.org/10.1021/acs.chemrev.3c00794 doi: 10.1021/acs.chemrev.3c00794

    34. [34]

      C. Xie, L. Xu, J. Peng, L. Zhang, X. Wang, J. Deng, M. Capron, V. Ordomsky, Adv. Funct. Mater. 33 (2023) 2213782, https://doi.org/10.1002/adfm.202213782 doi: 10.1002/adfm.202213782

    35. [35]

      Z. Bundhoo, Renew. Sustain. Energy Rev. 82 (2018) 1149, https://doi.org/10.1016/j.rser.2017.09.066 doi: 10.1016/j.rser.2017.09.066

    36. [36]

      S. Qiu, H. Shao, C. He, X. Song, J. Fan, Y. Xue, G. Li, H. Xiao, Appl. Catal. B Environ. Energy 344 (2024) 123615, https://doi.org/10.1016/j.apcatb.2023.123615 doi: 10.1016/j.apcatb.2023.123615

    37. [37]

      H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B Environ. 203 (2017) 300, https://doi.org/10.1016/j.apcatb.2016.10.014 doi: 10.1016/j.apcatb.2016.10.014

    38. [38]

      F. Kishimoto, T. Yoshioka, R. Ishibashi, H. Yamada, K. Muraoka, H. Taniguchi, T. Wakihara, K. Takanabe, Sci. Adv. 9 (2023) eadi1744, doi: 10.1126/sciadv.adi1744

    39. [39]

      X. Zhang, B. Ren, Z. Yang, H. Chen, S. Dai, ACS Catal. 15 (2025) 9290, https://doi.org/10.1021/acscatal.5c01353 doi: 10.1021/acscatal.5c01353

    40. [40]

      J. Lin, L. Duan, J. Zhang, X. Quan, R. Du, G. Chen, X. Liu, R. Ma, N. Zhang, Appl. Catal. B Environ. 2025, 371 (2025) 125268, https://doi.org/10.1016/j.apcatb.2025.125268 doi: 10.1016/j.apcatb.2025.125268

    41. [41]

      L. Jiang, W. Li, H. Wang, J. Yang, H. Chen, X. Wang, X. Yang, H. Wang, J. Hazard. Mater. 469 (2024) 133806, https://doi.org/10.1016/j.jhazmat.2024.133806 doi: 10.1016/j.jhazmat.2024.133806

    42. [42]

      X. Zhang, J. Deng, T. Lan, Y. Shen, Q. Zhong, W. Ren, D. Zhang, ACS Catal. 12 (2022) 14152, https://doi.org/10.1021/acscatal.2c04800 doi: 10.1021/acscatal.2c04800

    43. [43]

      C. Ma, Y. Zhang, S. Yan, B. Liu, Appl. Catal. B Environ. 315 (2022) 121574, https://doi.org/10.1016/j.apcatb.2022.121574 doi: 10.1016/j.apcatb.2022.121574

    44. [44]

      J. Liang, H. Zhang, Q. Song, Z. Liu, J. Xia, B. Yan, X. Meng, Z. Jiang, X. Lou, C. Lee, Adv. Mater. 36 (2024) 2303287, https://doi.org/10.1002/adma.202303287 doi: 10.1002/adma.202303287

    45. [45]

      Q. Shentu, Z. Wu, W. Song, S. Pang, Z. Zhou, W. Lv, C. Song, Y. Yao, Chem. Eng. J. 446 (2022) 137274, https://doi.org/10.1016/j.cej.2022.137274 doi: 10.1016/j.cej.2022.137274

    46. [46]

      Y. Tang, C. Fan, Z. Zang, Y. Cheng, L. Li, X. Yu, X. Yang, Z. Lu, X. Zhang, H. Liu, J. Colloid Interface Sci. 683 (2025) 312, https://doi.org/10.1016/j.jcis.2024.12.078 doi: 10.1016/j.jcis.2024.12.078

    47. [47]

      H. Zhang, Y. Liu, H. Wei, C. Wang, T. Liu, X. Wu, S. Ashraf, S. Mehdi, S. Guan, Y. Fan, et al., Appl. Catal. B Environ. 314 (2022) 121495, https://doi.org/10.1016/j.apcatb.2022.121495 doi: 10.1016/j.apcatb.2022.121495

    48. [48]

      L. Chen, M. Zhou, Z. Luo, M. Wakeel, A. Asiri, X. Wang, Appl. Catal. B Environ. 241 (2019) 246, https://doi.org/10.1016/j.apcatb.2018.09.034 doi: 10.1016/j.apcatb.2018.09.034

    49. [49]

      H. Wu, X. Chen, H. Xu, R. Yang, X. Wang, J. Chen, Z. Xie, L. Wu, Y. Mai, Nano Res. 17 (2024) 7991, https://doi.org/10.1007/s12274-024-6816-x doi: 10.1007/s12274-024-6816-x

    50. [50]

      W. Zhang, H. Bai, B. Ma, L. Wang, Y. Zhang, Q. Luo, J. An, H. Mu, Y. Zhang, D. Wang, Appl. Catal. B Environ. 356 (2024) 124241, https://doi.org/10.1016/j.apcatb.2024.124241 doi: 10.1016/j.apcatb.2024.124241

    51. [51]

      Y. Wang, G. Chen, H. Weng, L. Wang, J. Chen, S. Cheng, P. Zhang, M. Wang, X. Ge, H. Chen, et al., Chem. Eng. J. 410 (2021) 128280, https://doi.org/10.1016/j.cej.2020.128280 doi: 10.1016/j.cej.2020.128280

    52. [52]

      B. Feng, Y. Liu, K. Wan, S. Zu, Y. Pei, X. Zhang, M. Qiao, H. Li, B. Zong, Angew. Chem. Int. Ed. 63 (2024) e202401884, https://doi.org/10.1002/anie.202401884 doi: 10.1002/anie.202401884

    53. [53]

      J. Sun, Y. Guan, G. Yang, S. Qiu, H. Shao, Y. Wang, G. Li, S. Xiao, ACS Sustain. Chem. Eng. 11 (2023) 14827, https://doi.org/10.1021/acssuschemeng.3c05228 doi: 10.1021/acssuschemeng.3c05228

    54. [54]

      Y. Ji, H. Ma, H. Shao, Z. Tao, W. Wang, Y. Miao, S. Xiao, Environ. Res. 276 (2025) 121501, https://doi.org/10.1016/j.envres.2025.121501 doi: 10.1016/j.envres.2025.121501

    55. [55]

      H. Shao, M. Heng, J. Guo, R. Yang, H. Zhang, J. Fan, G. Li, Y. Miao, S. Xiao, Langmuir. 41 (2024) 1115, https://doi.org/10.1021/acs.langmuir.4c04436 doi: 10.1021/acs.langmuir.4c04436

    56. [56]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys.-Chim. Sin. 40 (2024) 2403032, https://doi.org/10.1016/j.actphy.2025.100063 doi: 10.1016/j.actphy.2025.100063

    57. [57]

      J. Qi, Y. An, Y. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002 doi: 10.3866/PKU.WHXB202408002

    58. [58]

      X. Wang, S. Dong, K. Qi K, V. Popkov, X. Xiang, Acta Phys.-Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005 doi: 10.3866/PKU.WHXB202408005

    59. [59]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys.-Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002 doi: 10.3866/PKU.WHXB202407002

    60. [60]

      Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys.-Chim. Sin. 39 (2023) 103866, https://doi.org/10.3866/PKU.WHXB202211051 doi: 10.3866/PKU.WHXB202211051

    61. [61]

      L. Yang, Z. Li, X. Wang, L. Li, Z. Chen, Chin. J. Catal. 59 (2024) 237, https://doi.org/10.1016/S1872-2067(23)64566-8 doi: 10.1016/S1872-2067(23)64566-8

    62. [62]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chen. Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5 doi: 10.1016/S1872-2067(24)60066-5

    63. [63]

      X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chen. Chin. J. Catal. 51 (2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X doi: 10.1016/S1872-2067(23)64478-X

    64. [64]

      M. Lin, M. Luo, Y. Liu Y, J. Shen, J. Long, Z. Zhang, Chen. Chin. J. Catal. 50 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8 doi: 10.1016/S1872-2067(23)64477-8

    65. [65]

      M. Song, X. Song, X. Liu, W. Zhou, P. Huo, Chen. Chin. J. Catal. 51 (2023) 180, https://doi.org/10.1016/S1872-2067(23)64480-8 doi: 10.1016/S1872-2067(23)64480-8

    66. [66]

      Z. Zhang, X Wang, H. Tang, D. Li, J. Xu, Chen. Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8 doi: 10.1016/S1872-2067(23)64549-8

    67. [67]

      H. He, Z. Wang, K. Dai, S. Li, J. Zhang, Chin. J. Catal. 48 (2023) 267, https://doi.org/10.1016/S1872-2067(23)64420-1 doi: 10.1016/S1872-2067(23)64420-1

    68. [68]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B Environ. 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167 doi: 10.1016/j.apcatb.2024.124167

    69. [69]

      P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 14 (2024) 15025, https://doi.org/10.1021/acscatal.4c04644 doi: 10.1021/acscatal.4c04644

    70. [70]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D doi: 10.1039/D4CS01091D

    71. [71]

      H. Qin, Y. Huang, Q. Cheng, S. Yan, K. Wang, Chin. J. Catal. 72 (2025) 106, https://doi.org/10.1016/S1872-2067(24)60265-2 doi: 10.1016/S1872-2067(24)60265-2

    72. [72]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Chin. J. Catal. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0 doi: 10.1007/s40843-023-2717-0

    73. [73]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560 doi: 10.1016/j.apcatb.2024.124560

    74. [74]

      Q. Cheng, J. Li, Y. Huang, X. Liu, B. Zhou, Q. Xiong, K. Wang, Adv. Sci. 12 (2025) 2500218, https://doi.org/10.1002/advs.202500218 doi: 10.1002/advs.202500218

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  103
  • HTML全文浏览量:  21
文章相关
  • 发布日期:  2025-11-15
  • 收稿日期:  2025-06-25
  • 接受日期:  2025-07-18
  • 修回日期:  2025-07-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章