Citation: Jiaqi Yang, Xuqiang Hao, Jiejie Jing, Yuqiang Hao, Zhiliang Jin. 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100131. doi: 10.1016/j.actphy.2025.100131 shu

3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production

  • Corresponding author: Xuqiang Hao, haoxuqiang@nun.edu.cn
  • Received Date: 18 June 2025
    Revised Date: 17 July 2025
    Accepted Date: 18 July 2025

    Fund Project: Ningxia Hui Autonomous Region full-time introduced high-level talent research project 2023BSB03047

  • The rational construction of step-scheme (S-scheme) heterojunctions has been demonstrated as an effective strategy to optimize interfacial charge carrier separation dynamics in semiconductor photocatalysts. In this work, a hierarchical ReSe2/ZnCdS S-scheme heterojunction with well-defined architectures was successfully synthesized via an ultrasonication-assisted synthetic strategy, achieving precise nanostructure control and enhanced interfacial coupling for optimized photogenerated charge dynamics. The disordered nanoflower-like ReSe2 architecture enhances light-harvesting efficiency and the density of surface reaction sites, and significantly suppresses ZnCdS nanoparticle aggregation. The optimized 5%ReSe2/ZnCdS composite exhibits an exceptional hydrogen evolution rate of 13.96 mmol∙g−1∙h−1 under visible light irradiation, representing a 5.91-fold enhancement over pristine ZnCdS (2.36 mmol∙g−1∙h−1) and outperforming most conventional heterojunction systems. The outstanding photocatalytic performance is attributed to the formation of the ReSe2/ZnCdS S-scheme heterojunction, which promotes the separation of photogenerated electrons and holes, enhancing the photo-redox capacity. Combining in situ X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations further conform the S-scheme charge transfer mechanism at the heterointerface of ReSe2/ZnCdS. Furthermore, Gibbs free energy calculations of hydrogen adsorption confirm that ReSe2 as the predominant catalytic center provides more favorable hydrogen adsorption kinetics than ZnCdS. This work provides a universal framework to design ZnCdS-based S-scheme heterojunctions for high-efficiency photocatalytic hydrogen evolution.
  • 加载中
    1. [1]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    2. [2]

      J. Wang, X. Niu, R. Wang, K. Zhang, X. Shi, H. Yang, J. Ye, Y. Wu, Appl. Catal. B Environ. Energy 362 (2025) 124763, https://doi.org/10.1016/j.apcatb.2024.124763.  doi: 10.1016/j.apcatb.2024.124763

    3. [3]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    4. [4]

      X. H. Li, X. D. Li, Q. H. Sun, J. J. He, Z. Yang, J. C. Xiao, C. S. Huang, Acta Phys. -Chim. Sin. 39 (2023) 2206029, https://doi.org/10.3866/PKU.WHXB202206029.  doi: 10.3866/PKU.WHXB202206029

    5. [5]

      D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, ACS Catal. 14 (2024) 5326, https://doi.org/10.1021/acscatal.4c00409.  doi: 10.1021/acscatal.4c00409

    6. [6]

      J. Ma, X. Li, Y. Li, G. Jiao, H. Su, D. Xiao, S. Zhai, R. Sun, Adv. Powder Mater. 1 (2022) 100058, https://doi.org/10.1016/j.apmate.2022.100058.  doi: 10.1016/j.apmate.2022.100058

    7. [7]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    8. [8]

      X. Hao, W. Deng, Y. Fan, Z. Jin, J. Mater. Chem. A 12 (2024) 8543, https://doi.org/10.1039/d4ta01140f.  doi: 10.1039/d4ta01140f

    9. [9]

      X. Cheng, B. Liu, H. Zhao, H. Zhang, J. Wang, Z. Li, B. Li, Z. Chen, J. Hu, J. Colloid Interface Sci. 655 (2024) 943, https://doi.org/10.1016/j.jcis.2023.11.031.  doi: 10.1016/j.jcis.2023.11.031

    10. [10]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054  doi: 10.1016/j.jmst.2023.12.054

    11. [11]

      L. Wang, Q. Zeng, X. Gao, Y. Wei, W. Li, D. Zeng, Int. J. Hydrogen Energy 92 (2024) 1133, https://doi.org/10.1016/j.ijhydene.2024.10.354.  doi: 10.1016/j.ijhydene.2024.10.354

    12. [12]

      H. Yang, C. Li, M. Mao, H. Sun, X. Zhu, Y. Zhang, Y. Li, Z. Jiang, ACS Appl. Nano Mater. 7 (2024) 22093, https://doi.org/10.1021/acsanm.4c04058.  doi: 10.1021/acsanm.4c04058

    13. [13]

      S. Liu, W. Wang, S. Shi, S. Liao, M. Zhong, W. Xiao, S. Wang, X. Wang, C. Chen, Appl. Surf. Sci. 657 (2024) 159795, https://doi.org/10.1016/j.apsusc.2024.159795.  doi: 10.1016/j.apsusc.2024.159795

    14. [14]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/s1872-2067(22)64201-3.  doi: 10.1016/s1872-2067(22)64201-3

    15. [15]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    16. [16]

      S. Zhen, H. Yue, Q. Ma, W. Guo, P. Wang, L. Zhang, Z. Guo, W. Yuan, Int. J. Hydrogen Energy 113 (2025) 312, https://doi.org/10.1016/j.ijhydene.2025.02.473.  doi: 10.1016/j.ijhydene.2025.02.473

    17. [17]

      J. Ran, L. Chen, D. Wang, A. Talebian‐Kiakalaieh, Y. Jiao, M. Adel Hamza, Y. Qu, L. Jing, K. Davey, S. Qiao, Adv. Mater. 35 (2023) 2210164, https://doi.org/ 10.1002/adma.202210164.  doi: 10.1002/adma.202210164

    18. [18]

      I. S. Kwon, I. H. Kwak, S. Ju, S. Kang, S. Han, Y. C. Park, J. Park, J. Park, ACS Nano 14 (2020) 12184, https://doi.org/10.1021/acsnano.0c05874.  doi: 10.1021/acsnano.0c05874

    19. [19]

      C. Huang, N. Liu, Y. Zhou, H. Mao, F. Qi, X. Ouyang, Sep. Purif. Technol. 354 (2025) 128838, https://doi.org/ 10.1016/j.seppur.2024.128838.  doi: 10.1016/j.seppur.2024.128838

    20. [20]

      W. Li, G. Zuo, S. Ma, L. Xi, C. Ouyang, M. He, Y. Wang, Q. Ji, S. Yang, W. Zhu, K. Zhang, H. He, Appl. Catal. B Environ. Energy 365 (2025) 124971, https://doi.org/ 10.1016/j.apcatb.2024.124971.  doi: 10.1016/j.apcatb.2024.124971

    21. [21]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/ 10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    22. [22]

      J. Xu, W. Zhong, F. Chen, X. Wang, H. Yu, Appl. Catal. B Environ 328 (2023) 122493, https://doi.org/10.1016/j.apcatb.2023.122493.  doi: 10.1016/j.apcatb.2023.122493

    23. [23]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    24. [24]

      Z. Ma, S. Zhan, Y. Zhang, A. Kuklin, Y. Chen, Y. Lin, H. Zhang, X. Ren, H. Ågren, Y. Zhang, Adv. Mater. 37 (2025) 2416581, https://doi.org/10.1002/adma.202416581.  doi: 10.1002/adma.202416581

    25. [25]

      X. Yang, Y. Jin, S. Ke, M. Li, X. Yang, L. Shen, M. Q. Yang, Chem. Eng. J. 499 (2024) 155687, https://doi.org/10.1016/j.cej.2024.155687.  doi: 10.1016/j.cej.2024.155687

    26. [26]

      X. Wu, N. Kang, X. Li, Z. Xu, S. A. C. Carabineiro, K. Lv, J. Mater. Sci. Technol. 196 (2024) 40, https://doi.org/10.1016/j.jmst.2024.01.048.  doi: 10.1016/j.jmst.2024.01.048

    27. [27]

      F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Nat. Commun. 14 (2023) 3901, https://doi.org/10.1038/s41467-023-39578-z.  doi: 10.1038/s41467-023-39578-z

    28. [28]

      Y. Tang, Z. Xu, Y. Sun, C. Wang, Y. Guo, W. Hao, X. Tan, J. Ye, T. Yu, Energy Environ. Sci. 17 (2024) 7882, https://doi.org/10.1039/d4ee03092c.  doi: 10.1039/d4ee03092c

    29. [29]

      Z. Qin, L. Shen, S. Yan, J. Wang, Y. Gao, J. Mater. Chem. A 12 (2024) 27641, https://doi.org/10.1039/d4ta05550k.  doi: 10.1039/d4ta05550k

    30. [30]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    31. [31]

      Y. Fan, X. Hao, N. Yi, Z. Jin, Appl. Catal. B Environ. Energy 357 (2024) 124313, https://doi.org/ 10.1016/j.apcatb.2024.124313.  doi: 10.1016/j.apcatb.2024.124313

    32. [32]

      Y. Xu, F. Qiu, S. Q. Xu, S. Zhu, Y. Zhang, H. Liu, P. Zong, L. Ma, K. Hong, Y. Wang, Adv. Funct. Mater. (2024) 2417553, 10.1002/adfm.202417553.

    33. [33]

      Y. Lei, Y. Zhang, Z. Li, S. Xu, J. Huang, K. H. Ng, Y. Lai, Chem. Eng. J. 425 (2021) 131478, https://doi.org/10.1016/j.cej.2021.131478.  doi: 10.1016/j.cej.2021.131478

    34. [34]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102.  doi: 10.1016/j.jmst.2024.12.102

    35. [35]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    36. [36]

      X. Zhang, F. Tian, M. Gao, W. Yang, Y. Yu, Chem. Eng. J. 428 (2022) 132628, https://doi.org/10.1016/j.cej.2021.132628.  doi: 10.1016/j.cej.2021.132628

    37. [37]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B Environ. Energy 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167.  doi: 10.1016/j.apcatb.2024.124167

    38. [38]

      Z. Hu, X. Hao, Y. Fan, Z. Jin, Chem. Eng. J. 481 (2024) 148455, https://doi.org/ 10.1016/j.cej.2023.148455.  doi: 10.1016/j.cej.2023.148455

    39. [39]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    40. [40]

      A. Wang, M. Du, J. Ni, D. Liu, Y. Pan, X. Liang, D. Liu, J. Ma, J. Wang, W. Wang, Nat. Commun. 4 (2023) 6733, https://doi.org/10.1038/s41467-023-42542-6.  doi: 10.1038/s41467-023-42542-6

    41. [41]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    42. [42]

      C. Yuan, H. Lv, Y. Zhang, Q. Fei, D. Xiao, H. Yin, Z. Lu, Y. Zhang, Carbon 206 (2023) 237, https://doi.org/10.1016/j.carbon.2023.02.022.  doi: 10.1016/j.carbon.2023.02.022

    43. [43]

      Z. Kong, J. Dong, J. Yu, D. Zhang, J. Liu, X. Y. Ji, P. Cai, X. Pu, Chem. Eng. J. 496 (2024) 153960, https://doi.org/10.1016/j.cej.2024.153960.  doi: 10.1016/j.cej.2024.153960

    44. [44]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067 (24) 60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    45. [45]

      Z. Xu, W. Yue, C. Li, L. Wang, Y. Xu, Z. Ye, J. Zhang, ACS Nano 17 (2023) 11655, https://doi.org/10.1021/acsnano.3c02092.  doi: 10.1021/acsnano.3c02092

    46. [46]

      X. Chen, Z. Han, Z. Lu, T. Qu, C. Liang, Y. Wang, X. Han, B. Zhang, P. Xu, Sustain. Energy Fuels 7 (2023) 1311, https://doi.org/10.1039/d2se01717b.  doi: 10.1039/d2se01717b

    47. [47]

      R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989, https://doi.org/ 10.1016/j.jmat.2024.100989.  doi: 10.1016/j.jmat.2024.100989

    48. [48]

      H. Feng, Y. Li, Y. Han, Y. Gu, Z. Li, Appl. Catal. B Environ. Energy 348 (2024) 123809, https://doi.org/10.1016/j.apcatb.2024.123809.  doi: 10.1016/j.apcatb.2024.123809

    49. [49]

      R. Kulkarni, L. Lingamdinne, R. Karri, Z. Momin, J. Koduru, Y. Chang, Coord. Chem. Rev. 497 (2023) 215460, https://doi.org/10.1016/j.ccr.2023.215460.  doi: 10.1016/j.ccr.2023.215460

    50. [50]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147, https://doi.org/10.1016/j.jmst.2023.06.048.  doi: 10.1016/j.jmst.2023.06.048

    51. [51]

      Y. Lu, Y. Wang, J. Liu, Y. Chen, K. Peng, A. Zhang, Y. Xie, Y. Ma, J. Zhao, Sep. Purif. Technol. 350 (2024) 128000, https://doi.org/10.1016/j.seppur.2024.128000.  doi: 10.1016/j.seppur.2024.128000

    52. [52]

      X. Liu, Q. Cao, G. Li, H. Liu, L. Zeng, L. Zhao, B. Chang, X. Wang, H. Liu, W. Zhou, Rare Met. 43 (2024) 2015, https://doi.org/10.1007/s12598-023-02555-y.  doi: 10.1007/s12598-023-02555-y

    53. [53]

      P. Zhang, S. Liu, J. Zhou, L. Zhou, B. Li, S. Li, X. Wu, Y. Chen, X. Li, X. Sheng, Y. Liu, J. Jiang, Small 20 (2024) 2307662, https://doi.org/10.1002/smll.202307662.  doi: 10.1002/smll.202307662

    54. [54]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    55. [55]

      J. Tian, C. Guan, H. Hu, E. Liu, D. Yang, Acta Phys. -Chim. Sin 41 (2025) 100068, https://doi.org/10.1016/j.actphy.2025.100068.  doi: 10.1016/j.actphy.2025.100068

    56. [56]

      Y. Ma, H. Fang, R. Chen, Q. Chen, S. Liu, K. Zhang, H. Li, Rare Met. 42 (2023) 3993, https://doi.org/10.1007/s12598-023-02387-w.  doi: 10.1007/s12598-023-02387-w

    57. [57]

      C. Bie, B. Zhu, L. Wang, H. Yu, C. Jiang, T. Chen, J. Yu, Angew. Chem. Int. Ed. 134 (2022) e202212045, https://doi.org/10.1002/anie.202212045.  doi: 10.1002/anie.202212045

    58. [58]

      J. Liu, X. Yang, X. Guo, Z. Jin, J. Mater. Sci. Technol. 196 (2024) 112, https://doi.org/10.1016/j.jmst.2024.01.058.  doi: 10.1016/j.jmst.2024.01.058

    59. [59]

      J. Zhao, C. Zhou, Y. Guo, Z. Shen, G. Luo, Q. Wu, Z. Hu, Adv. Powder Mater. 3 (2024) 100151, https://doi.org/10.1016/j.apmate.2023.100151.  doi: 10.1016/j.apmate.2023.100151

    60. [60]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 39 (2023) 2302051, https://doi.org/10.3866/PKU.WHXB202302051.  doi: 10.3866/PKU.WHXB202302051

    61. [61]

      X. Ma, S. Li, Y. Gao, N. Li, Y. Han, H. Pan, Y. Bian, J. Jiang, Adv. Funct. Mater. 34 (2024) 2409913, https://doi.org/10.1002/adfm.202409913.  doi: 10.1002/adfm.202409913

    62. [62]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    63. [63]

      H. Liu, S. He, J. Qu, Y. Cai, X. Yang, C. M. Li, J. Hu, Chin. J. Catal. 65 (2024) 1, https://doi.org/10.1016/s1872-2067 (24) 60118-x.  doi: 10.1016/s1872-2067(24)60118-x

    64. [64]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    65. [65]

      W. Li, J. Li, Z. Liu, H. Ma, P. Fang, R. Xiong, J. Wei, Rare Met. 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5.  doi: 10.1007/s12598-023-02419-5

    66. [66]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067 (24) 60066-5.  doi: 10.1016/S1872-2067(24)60066-5

    67. [67]

      W. Deng, X. Hao, J. Yang, Z. Jin, Appl. Catal. B Environ. Energy 360 (2025) 124551, https://doi.org/ 10.1016/j.apcatb.2024.124551.  doi: 10.1016/j.apcatb.2024.124551

    68. [68]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys.-Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    69. [69]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1039/d4gc05342g.  doi: 10.1039/d4gc05342g

    70. [70]

      W. Pang, X. Du, Y. Yang, C. Long, Y. Li, C. Hu, R. Xu, M. Tian, J. Xie, W. Wang, J. Guo, B. Li, P. Zhang, D. Fu, K. Zhao, Adv. Funct. Mater. 34 (2024) 2400466, https://doi.org/ 10.1002/adfm.202400466.  doi: 10.1002/adfm.202400466

    71. [71]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    72. [72]

      Z. Li, W. Liu, C. Chen, T. Ma, J. Zhang, Z. Wang, Acta Phys. -Chim. Sin. 39 (2023) 202208030, https://doi.org/10.3866/PKU.WHXB202208030.  doi: 10.3866/PKU.WHXB202208030

    73. [73]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.  doi: 10.1016/S1872-2067(24)60072-0

    74. [74]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9.  doi: 10.1016/s1872-2067(24)60099-9

    75. [75]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    76. [76]

      J. Yang, Y. He, Y. Hao, X. Hao, Z. Jin, J. Mater. Chem. A 13 (2025) 14024, https://doi.org/10.1039/d5ta01122a.  doi: 10.1039/d5ta01122a

  • 加载中
    1. [1]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    2. [2]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    4. [4]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    5. [5]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    7. [7]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    8. [8]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    9. [9]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    10. [10]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    11. [11]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    12. [12]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    15. [15]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

Metrics
  • PDF Downloads(0)
  • Abstract views(26)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return