3D/2D ReSe2/ZnCdS S型光催化剂高效界面电荷分离增强光催化析氢

杨佳琦 郝旭强 景杰杰 郝宇强 靳治良

引用本文: 杨佳琦, 郝旭强, 景杰杰, 郝宇强, 靳治良. 3D/2D ReSe2/ZnCdS S型光催化剂高效界面电荷分离增强光催化析氢[J]. 物理化学学报, 2025, 41(10): 100131. doi: 10.1016/j.actphy.2025.100131 shu
Citation:  Jiaqi Yang, Xuqiang Hao, Jiejie Jing, Yuqiang Hao, Zhiliang Jin. 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100131. doi: 10.1016/j.actphy.2025.100131 shu

3D/2D ReSe2/ZnCdS S型光催化剂高效界面电荷分离增强光催化析氢

    通讯作者: 郝旭强, haoxuqiang@nun.edu.cn
  • 基金项目:

    宁夏回族自治区全职引进高层次人才研究项目 2023BSB03047

摘要: 合理构建阶梯型(S型)异质结已被证实是优化半导体光催化剂界面载流子分离动力学的有效策略。本研究通过超声辅助合成策略成功制备了结构明确的3D/2D分级ReSe2/ZnCdS S型异质结,实现了精准的纳米结构调控和增强的界面耦合,从而显著优化了光生电荷的分离与传输动力学。无序纳米花状ReSe2结构不仅显著提升了光捕获能力和表面反应位点密度,同时有效抑制了ZnCdS纳米颗粒的团聚现象。优化后的5%ReSe2/ZnCdS复合物在可见光照射下表现出优异的析氢速率,高达13.96 mmol∙g−1∙h−1,是纯ZnCdS (2.36 mmol∙g−1∙h−1)的5.91倍,且优于多数传统异质结体系。这一显著增强的光催化性能主要归因于S型ReSe2/ZnCdS异质结的形成,该结构有效促进了光生电子-空穴的分离,并显著增强了光催化氧化还原能力。通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算,证实了ReSe2/ZnCdS异质界面的S型电荷转移机制。此外,氢吸附吉布斯自由能计算表明,ReSe2作为主要催化中心,其氢吸附动力学性能明显优于ZnCdS。本研究为开发高效ZnCdS基S型异质结产氢光催化剂提供了普适性的设计策略和研究思路。

English

    1. [1]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6. doi: 10.1038/s41467-024-53951-6

    2. [2]

      J. Wang, X. Niu, R. Wang, K. Zhang, X. Shi, H. Yang, J. Ye, Y. Wu, Appl. Catal. B Environ. Energy 362 (2025) 124763, https://doi.org/10.1016/j.apcatb.2024.124763. doi: 10.1016/j.apcatb.2024.124763

    3. [3]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    4. [4]

      X. H. Li, X. D. Li, Q. H. Sun, J. J. He, Z. Yang, J. C. Xiao, C. S. Huang, Acta Phys. -Chim. Sin. 39 (2023) 2206029, https://doi.org/10.3866/PKU.WHXB202206029. doi: 10.3866/PKU.WHXB202206029

    5. [5]

      D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, ACS Catal. 14 (2024) 5326, https://doi.org/10.1021/acscatal.4c00409. doi: 10.1021/acscatal.4c00409

    6. [6]

      J. Ma, X. Li, Y. Li, G. Jiao, H. Su, D. Xiao, S. Zhai, R. Sun, Adv. Powder Mater. 1 (2022) 100058, https://doi.org/10.1016/j.apmate.2022.100058. doi: 10.1016/j.apmate.2022.100058

    7. [7]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012. doi: 10.1016/j.mattod.2024.11.012

    8. [8]

      X. Hao, W. Deng, Y. Fan, Z. Jin, J. Mater. Chem. A 12 (2024) 8543, https://doi.org/10.1039/d4ta01140f. doi: 10.1039/d4ta01140f

    9. [9]

      X. Cheng, B. Liu, H. Zhao, H. Zhang, J. Wang, Z. Li, B. Li, Z. Chen, J. Hu, J. Colloid Interface Sci. 655 (2024) 943, https://doi.org/10.1016/j.jcis.2023.11.031. doi: 10.1016/j.jcis.2023.11.031

    10. [10]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054 doi: 10.1016/j.jmst.2023.12.054

    11. [11]

      L. Wang, Q. Zeng, X. Gao, Y. Wei, W. Li, D. Zeng, Int. J. Hydrogen Energy 92 (2024) 1133, https://doi.org/10.1016/j.ijhydene.2024.10.354. doi: 10.1016/j.ijhydene.2024.10.354

    12. [12]

      H. Yang, C. Li, M. Mao, H. Sun, X. Zhu, Y. Zhang, Y. Li, Z. Jiang, ACS Appl. Nano Mater. 7 (2024) 22093, https://doi.org/10.1021/acsanm.4c04058. doi: 10.1021/acsanm.4c04058

    13. [13]

      S. Liu, W. Wang, S. Shi, S. Liao, M. Zhong, W. Xiao, S. Wang, X. Wang, C. Chen, Appl. Surf. Sci. 657 (2024) 159795, https://doi.org/10.1016/j.apsusc.2024.159795. doi: 10.1016/j.apsusc.2024.159795

    14. [14]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/s1872-2067(22)64201-3. doi: 10.1016/s1872-2067(22)64201-3

    15. [15]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065. doi: 10.1002/adfm.202400065

    16. [16]

      S. Zhen, H. Yue, Q. Ma, W. Guo, P. Wang, L. Zhang, Z. Guo, W. Yuan, Int. J. Hydrogen Energy 113 (2025) 312, https://doi.org/10.1016/j.ijhydene.2025.02.473. doi: 10.1016/j.ijhydene.2025.02.473

    17. [17]

      J. Ran, L. Chen, D. Wang, A. Talebian‐Kiakalaieh, Y. Jiao, M. Adel Hamza, Y. Qu, L. Jing, K. Davey, S. Qiao, Adv. Mater. 35 (2023) 2210164, https://doi.org/ 10.1002/adma.202210164. doi: 10.1002/adma.202210164

    18. [18]

      I. S. Kwon, I. H. Kwak, S. Ju, S. Kang, S. Han, Y. C. Park, J. Park, J. Park, ACS Nano 14 (2020) 12184, https://doi.org/10.1021/acsnano.0c05874. doi: 10.1021/acsnano.0c05874

    19. [19]

      C. Huang, N. Liu, Y. Zhou, H. Mao, F. Qi, X. Ouyang, Sep. Purif. Technol. 354 (2025) 128838, https://doi.org/ 10.1016/j.seppur.2024.128838. doi: 10.1016/j.seppur.2024.128838

    20. [20]

      W. Li, G. Zuo, S. Ma, L. Xi, C. Ouyang, M. He, Y. Wang, Q. Ji, S. Yang, W. Zhu, K. Zhang, H. He, Appl. Catal. B Environ. Energy 365 (2025) 124971, https://doi.org/ 10.1016/j.apcatb.2024.124971. doi: 10.1016/j.apcatb.2024.124971

    21. [21]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/ 10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    22. [22]

      J. Xu, W. Zhong, F. Chen, X. Wang, H. Yu, Appl. Catal. B Environ 328 (2023) 122493, https://doi.org/10.1016/j.apcatb.2023.122493. doi: 10.1016/j.apcatb.2023.122493

    23. [23]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    24. [24]

      Z. Ma, S. Zhan, Y. Zhang, A. Kuklin, Y. Chen, Y. Lin, H. Zhang, X. Ren, H. Ågren, Y. Zhang, Adv. Mater. 37 (2025) 2416581, https://doi.org/10.1002/adma.202416581. doi: 10.1002/adma.202416581

    25. [25]

      X. Yang, Y. Jin, S. Ke, M. Li, X. Yang, L. Shen, M. Q. Yang, Chem. Eng. J. 499 (2024) 155687, https://doi.org/10.1016/j.cej.2024.155687. doi: 10.1016/j.cej.2024.155687

    26. [26]

      X. Wu, N. Kang, X. Li, Z. Xu, S. A. C. Carabineiro, K. Lv, J. Mater. Sci. Technol. 196 (2024) 40, https://doi.org/10.1016/j.jmst.2024.01.048. doi: 10.1016/j.jmst.2024.01.048

    27. [27]

      F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Nat. Commun. 14 (2023) 3901, https://doi.org/10.1038/s41467-023-39578-z. doi: 10.1038/s41467-023-39578-z

    28. [28]

      Y. Tang, Z. Xu, Y. Sun, C. Wang, Y. Guo, W. Hao, X. Tan, J. Ye, T. Yu, Energy Environ. Sci. 17 (2024) 7882, https://doi.org/10.1039/d4ee03092c. doi: 10.1039/d4ee03092c

    29. [29]

      Z. Qin, L. Shen, S. Yan, J. Wang, Y. Gao, J. Mater. Chem. A 12 (2024) 27641, https://doi.org/10.1039/d4ta05550k. doi: 10.1039/d4ta05550k

    30. [30]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456. doi: 10.1002/anie.202505456

    31. [31]

      Y. Fan, X. Hao, N. Yi, Z. Jin, Appl. Catal. B Environ. Energy 357 (2024) 124313, https://doi.org/ 10.1016/j.apcatb.2024.124313. doi: 10.1016/j.apcatb.2024.124313

    32. [32]

      Y. Xu, F. Qiu, S. Q. Xu, S. Zhu, Y. Zhang, H. Liu, P. Zong, L. Ma, K. Hong, Y. Wang, Adv. Funct. Mater. (2024) 2417553, 10.1002/adfm.202417553.

    33. [33]

      Y. Lei, Y. Zhang, Z. Li, S. Xu, J. Huang, K. H. Ng, Y. Lai, Chem. Eng. J. 425 (2021) 131478, https://doi.org/10.1016/j.cej.2021.131478. doi: 10.1016/j.cej.2021.131478

    34. [34]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102. doi: 10.1016/j.jmst.2024.12.102

    35. [35]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    36. [36]

      X. Zhang, F. Tian, M. Gao, W. Yang, Y. Yu, Chem. Eng. J. 428 (2022) 132628, https://doi.org/10.1016/j.cej.2021.132628. doi: 10.1016/j.cej.2021.132628

    37. [37]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B Environ. Energy 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167. doi: 10.1016/j.apcatb.2024.124167

    38. [38]

      Z. Hu, X. Hao, Y. Fan, Z. Jin, Chem. Eng. J. 481 (2024) 148455, https://doi.org/ 10.1016/j.cej.2023.148455. doi: 10.1016/j.cej.2023.148455

    39. [39]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x. doi: 10.1038/s41467-025-56306-x

    40. [40]

      A. Wang, M. Du, J. Ni, D. Liu, Y. Pan, X. Liang, D. Liu, J. Ma, J. Wang, W. Wang, Nat. Commun. 4 (2023) 6733, https://doi.org/10.1038/s41467-023-42542-6. doi: 10.1038/s41467-023-42542-6

    41. [41]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X. doi: 10.1016/S1872-2067(24)60077-X

    42. [42]

      C. Yuan, H. Lv, Y. Zhang, Q. Fei, D. Xiao, H. Yin, Z. Lu, Y. Zhang, Carbon 206 (2023) 237, https://doi.org/10.1016/j.carbon.2023.02.022. doi: 10.1016/j.carbon.2023.02.022

    43. [43]

      Z. Kong, J. Dong, J. Yu, D. Zhang, J. Liu, X. Y. Ji, P. Cai, X. Pu, Chem. Eng. J. 496 (2024) 153960, https://doi.org/10.1016/j.cej.2024.153960. doi: 10.1016/j.cej.2024.153960

    44. [44]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067 (24) 60102-6. doi: 10.1016/S1872-2067(24)60102-6

    45. [45]

      Z. Xu, W. Yue, C. Li, L. Wang, Y. Xu, Z. Ye, J. Zhang, ACS Nano 17 (2023) 11655, https://doi.org/10.1021/acsnano.3c02092. doi: 10.1021/acsnano.3c02092

    46. [46]

      X. Chen, Z. Han, Z. Lu, T. Qu, C. Liang, Y. Wang, X. Han, B. Zhang, P. Xu, Sustain. Energy Fuels 7 (2023) 1311, https://doi.org/10.1039/d2se01717b. doi: 10.1039/d2se01717b

    47. [47]

      R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989, https://doi.org/ 10.1016/j.jmat.2024.100989. doi: 10.1016/j.jmat.2024.100989

    48. [48]

      H. Feng, Y. Li, Y. Han, Y. Gu, Z. Li, Appl. Catal. B Environ. Energy 348 (2024) 123809, https://doi.org/10.1016/j.apcatb.2024.123809. doi: 10.1016/j.apcatb.2024.123809

    49. [49]

      R. Kulkarni, L. Lingamdinne, R. Karri, Z. Momin, J. Koduru, Y. Chang, Coord. Chem. Rev. 497 (2023) 215460, https://doi.org/10.1016/j.ccr.2023.215460. doi: 10.1016/j.ccr.2023.215460

    50. [50]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147, https://doi.org/10.1016/j.jmst.2023.06.048. doi: 10.1016/j.jmst.2023.06.048

    51. [51]

      Y. Lu, Y. Wang, J. Liu, Y. Chen, K. Peng, A. Zhang, Y. Xie, Y. Ma, J. Zhao, Sep. Purif. Technol. 350 (2024) 128000, https://doi.org/10.1016/j.seppur.2024.128000. doi: 10.1016/j.seppur.2024.128000

    52. [52]

      X. Liu, Q. Cao, G. Li, H. Liu, L. Zeng, L. Zhao, B. Chang, X. Wang, H. Liu, W. Zhou, Rare Met. 43 (2024) 2015, https://doi.org/10.1007/s12598-023-02555-y. doi: 10.1007/s12598-023-02555-y

    53. [53]

      P. Zhang, S. Liu, J. Zhou, L. Zhou, B. Li, S. Li, X. Wu, Y. Chen, X. Li, X. Sheng, Y. Liu, J. Jiang, Small 20 (2024) 2307662, https://doi.org/10.1002/smll.202307662. doi: 10.1002/smll.202307662

    54. [54]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    55. [55]

      J. Tian, C. Guan, H. Hu, E. Liu, D. Yang, Acta Phys. -Chim. Sin 41 (2025) 100068, https://doi.org/10.1016/j.actphy.2025.100068. doi: 10.1016/j.actphy.2025.100068

    56. [56]

      Y. Ma, H. Fang, R. Chen, Q. Chen, S. Liu, K. Zhang, H. Li, Rare Met. 42 (2023) 3993, https://doi.org/10.1007/s12598-023-02387-w. doi: 10.1007/s12598-023-02387-w

    57. [57]

      C. Bie, B. Zhu, L. Wang, H. Yu, C. Jiang, T. Chen, J. Yu, Angew. Chem. Int. Ed. 134 (2022) e202212045, https://doi.org/10.1002/anie.202212045. doi: 10.1002/anie.202212045

    58. [58]

      J. Liu, X. Yang, X. Guo, Z. Jin, J. Mater. Sci. Technol. 196 (2024) 112, https://doi.org/10.1016/j.jmst.2024.01.058. doi: 10.1016/j.jmst.2024.01.058

    59. [59]

      J. Zhao, C. Zhou, Y. Guo, Z. Shen, G. Luo, Q. Wu, Z. Hu, Adv. Powder Mater. 3 (2024) 100151, https://doi.org/10.1016/j.apmate.2023.100151. doi: 10.1016/j.apmate.2023.100151

    60. [60]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 39 (2023) 2302051, https://doi.org/10.3866/PKU.WHXB202302051. doi: 10.3866/PKU.WHXB202302051

    61. [61]

      X. Ma, S. Li, Y. Gao, N. Li, Y. Han, H. Pan, Y. Bian, J. Jiang, Adv. Funct. Mater. 34 (2024) 2409913, https://doi.org/10.1002/adfm.202409913. doi: 10.1002/adfm.202409913

    62. [62]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012. doi: 10.1016/j.jmst.2024.02.012

    63. [63]

      H. Liu, S. He, J. Qu, Y. Cai, X. Yang, C. M. Li, J. Hu, Chin. J. Catal. 65 (2024) 1, https://doi.org/10.1016/s1872-2067 (24) 60118-x. doi: 10.1016/s1872-2067(24)60118-x

    64. [64]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    65. [65]

      W. Li, J. Li, Z. Liu, H. Ma, P. Fang, R. Xiong, J. Wei, Rare Met. 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5. doi: 10.1007/s12598-023-02419-5

    66. [66]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067 (24) 60066-5. doi: 10.1016/S1872-2067(24)60066-5

    67. [67]

      W. Deng, X. Hao, J. Yang, Z. Jin, Appl. Catal. B Environ. Energy 360 (2025) 124551, https://doi.org/ 10.1016/j.apcatb.2024.124551. doi: 10.1016/j.apcatb.2024.124551

    68. [68]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys.-Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    69. [69]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1039/d4gc05342g. doi: 10.1039/d4gc05342g

    70. [70]

      W. Pang, X. Du, Y. Yang, C. Long, Y. Li, C. Hu, R. Xu, M. Tian, J. Xie, W. Wang, J. Guo, B. Li, P. Zhang, D. Fu, K. Zhao, Adv. Funct. Mater. 34 (2024) 2400466, https://doi.org/ 10.1002/adfm.202400466. doi: 10.1002/adfm.202400466

    71. [71]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    72. [72]

      Z. Li, W. Liu, C. Chen, T. Ma, J. Zhang, Z. Wang, Acta Phys. -Chim. Sin. 39 (2023) 202208030, https://doi.org/10.3866/PKU.WHXB202208030. doi: 10.3866/PKU.WHXB202208030

    73. [73]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0

    74. [74]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9. doi: 10.1016/s1872-2067(24)60099-9

    75. [75]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    76. [76]

      J. Yang, Y. He, Y. Hao, X. Hao, Z. Jin, J. Mater. Chem. A 13 (2025) 14024, https://doi.org/10.1039/d5ta01122a. doi: 10.1039/d5ta01122a

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-06-18
  • 接受日期:  2025-07-18
  • 修回日期:  2025-07-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章