Citation: Hui Zhang, Zijian Zhao, Yajing Wang, Kai Ni, Yanfei Wang, Liang Zhu, Jianyun Liu, Xiaoyu Zhao. Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100130. doi: 10.1016/j.actphy.2025.100130 shu

Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine

  • The development of high-mass-loading electrodes with robust ion transport characteristics is crucial for efficient electrochemical lithium extraction from brine. Herein, we report a solvent-free hot-pressing strategy to fabricate structurally engineered LiFePO4 electrodes with enhanced electrochemical performance and mechanical stability. By integrating etched titanium foil as a current collector and multi-walled carbon nanotubes as a conductive additive, a three-dimensionally interconnected porous structure was formed, enabling accelerated ion diffusion and improved structural integrity. Micro-CT and Avizo-based analysis revealed that the dry press-coated electrodes possess higher porosity, lower tortuosity and more connected ion channels compared to conventional slurry-coated electrodes. Electrochemical tests demonstrated a significantly higher lithium-ion diffusion coefficient and lower charge transfer resistance of the dry press-coated electrodes. Under optimized conditions, the dry press-coated electrodes, possessing a mass loading of 19.4 mg cm-2, delivered a lithium extraction capacity of 4.13 mg cm-2 with a purity of 93.91% over 15 cycles in simulated Uyuni brine. This work establishes a scalable hot-pressing method and elucidates its fundamental physicochemical advantages for lithium-selective electrochemical separation.
  • 加载中
    1. [1]

      J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang, X. Xiang, Desalination 547 (2023) 116225, https://doi.org/10.1016/j.desal.2022.116225.  doi: 10.1016/j.desal.2022.116225

    2. [2]

      L. Song, H. Liang, S. Li, B. Qiu, Z. Liu, Acta Phys. -Chim. Sin. 41 (8) (2025) 100085, https://doi.org/10.1016/j.actphy.2025.100085.  doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Z. Han, D. Zhang, H. Wang, G. Zheng, M. Liu, Y. He, Acta Phys. -Chim. Sin. 40 (9) (2024) 2307034, https://doi.org/10.3866/PKU.WHXB202307034.  doi: 10.3866/PKU.WHXB202307034

    4. [4]

      L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.  doi: 10.1016/j.watres.2022.118822

    5. [5]

      L. Zhang, T. Zhang, S. Lv, S. Song, H. J. O. Galván, M. Quintana, Y. Zhao, Desalination 579 (2024) 117480, https://doi.org/10.1016/j.desal.2024.117480.  doi: 10.1016/j.desal.2024.117480

    6. [6]

      E. S. Rentier, C. Hoorn, A. C. Seijmonsbergen, Renew. Sust. Energ. Rev. 202 (2024) 114642, https://doi.org/10.1016/j.rser.2024.114642.  doi: 10.1016/j.rser.2024.114642

    7. [7]

      Y. Han, Y. Yang, Y. Ma, D. Liang, L. Wen, J. Ma, W. Wang, J. Hazard. Mater. 480 (2024) 136335, https://doi.org/10.1016/j.jhazmat.2024.136335.  doi: 10.1016/j.jhazmat.2024.136335

    8. [8]

      Z. Wei, B. Hu, C. Yao, J. Yang, B. Zhang, Y. Wang, X. Li, J. Guo, J. Liu, J. Colloid Interface Sci. 693 (2025) 137655, https://doi.org/10.1016/j.jcis.2025.137655.  doi: 10.1016/j.jcis.2025.137655

    9. [9]

      J. Wang, X. Yue, P. Wang, T. Yu, X. Du, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energ. Rev. 154 (2022) 111813, https://doi.org/10.1016/j.rser.2021.111813.  doi: 10.1016/j.rser.2021.111813

    10. [10]

      A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 528 (2022) 115611, https://doi.org/10.1016/j.desal.2022.115611.  doi: 10.1016/j.desal.2022.115611

    11. [11]

      Y. Boroumand, S. Abrishami, A. Razmjou, Nat. Sustain. 7 (12) (2024) 1550, https://doi.org/10.1038/s41893-024-01451-2.  doi: 10.1038/s41893-024-01451-2

    12. [12]

      S. Santoro, M. Aquino, C. Rizza, J. Occhiuzzi, D. Mastrippolito, G. D'Olimpio, A. H. Avci, J. De Santis, V. Paolucci, L. Ottaviano, et al., Desalination 546 (2023) 116186, https://doi.org/10.1016/j.desal.2022.116186.  doi: 10.1016/j.desal.2022.116186

    13. [13]

      A. F. Eskafi, C. De Finnda, C. A. Garcia, B. Mi, Environ. Sci. Technol. 59 (1) (2025) 892, https://doi.org/10.1021/acs.est.4c08151.  doi: 10.1021/acs.est.4c08151

    14. [14]

      T. Zhang, W. Zheng, Q. Wang, Z. Wu, Z. Wang, Desalination 546 (2023) 116205, https://doi.org/10.1016/j.desal.2022.116205.  doi: 10.1016/j.desal.2022.116205

    15. [15]

      Z. H. Foo, D. Rehman, A. T. Bouma, S. Monsalvo, J. H. Lienhard, Environ. Sci. Technol. 57 (15) (2023) 6320, https://doi.org/10.1021/acs.est.2c08584.  doi: 10.1021/acs.est.2c08584

    16. [16]

      Z. Yang, W. Fang, Z. Wang, R. Zhang, Y. Zhu, J. Jin, J. Membr. Sci. 620 (2021) 118862, https://doi.org/10.1016/j.memsci.2020.118862.  doi: 10.1016/j.memsci.2020.118862

    17. [17]

      F. Xue, X. Yang, Z. He, F. Chen, S. Ju, J. Environ. Chem. Eng. 12 (6) (2024) 114696, https://doi.org/10.1016/j.jece.2024.114696.  doi: 10.1016/j.jece.2024.114696

    18. [18]

      C. Zhang, J. Yao, W. Zhai, H. Chen, H. He, Y. -B. Zhang, T. He, Chem. Eng. J. 467 (2023) 143526, https://doi.org/10.1016/j.cej.2023.143526.  doi: 10.1016/j.cej.2023.143526

    19. [19]

      M. R. Mojid, K. J. Lee, J. You, Sustain. Mater. Technol. 40 (2024) e00923, https://doi.org/10.1016/j.susmat.2024.e00923.  doi: 10.1016/j.susmat.2024.e00923

    20. [20]

      T. Kanagasundaram, O. Murphy, M. N. Haji, J. J. Wilson, Coord. Chem. Rev. 509 (2024) 215727, https://doi.org/10.1016/j.ccr.2024.215727.  doi: 10.1016/j.ccr.2024.215727

    21. [21]

      H. Su, B. Tan, J. Zhang, W. Liu, L. Wang, Y. Wang, Z. Zhu, T. Qi, Sep. Purif. Technol. 282 (2022) 120110, https://doi.org/10.1016/j.seppur.2021.120110.  doi: 10.1016/j.seppur.2021.120110

    22. [22]

      A. Deshmukh, Z. H. Foo, C. Stetson, H. Lee, C. J. Orme, A. D. Wilson, J. H. Lienhard, Chem. Eng. J. 434 (2022) 134391, https://doi.org/10.1016/j.cej.2021.134391.  doi: 10.1016/j.cej.2021.134391

    23. [23]

      G. Tan, S. Wan, J. -J. Chen, H. -Q. Yu, Y. Yu, Adv. Mater. 36 (14) (2024) 2310657, https://doi.org/10.1002/adma.202310657.  doi: 10.1002/adma.202310657

    24. [24]

      X. Zhao, Z. He, M. Li, C. He, Y. Xu, Y. Wang, J. Ma, H. Y. Yang, Desalination 597 (2025) 118377, https://doi.org/10.1016/j.desal.2024.118377.  doi: 10.1016/j.desal.2024.118377

    25. [25]

      J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005.  doi: 10.1016/j.jechem.2023.10.005

    26. [26]

      X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (41) (2024) 2405176, https://doi.org/10.1002/advs.202405176.  doi: 10.1002/advs.202405176

    27. [27]

      X. Lai, P. Xiong, H. Zhong, Hydrometallurgy 192 (2020) 105252, https://doi.org/10.1016/j.hydromet.2020.105252.  doi: 10.1016/j.hydromet.2020.105252

    28. [28]

      N. Gan, Y. Lin, B. Wu, Y. Qiu, H. Sun, J. Su, J. Yu, Q. Lin, H. Matsuyama, Water Res. 268 (2025) 122703, https://doi.org/10.1016/j.watres.2024.122703.  doi: 10.1016/j.watres.2024.122703

    29. [29]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.  doi: 10.1016/j.desal.2020.114883

    30. [30]

      L. Wang, L. Wang, J. Wang, X. Wang, Sep. Purif. Technol. 303 (2022) 121933, https://doi.org/10.1016/j.seppur.2022.121933.  doi: 10.1016/j.seppur.2022.121933

    31. [31]

      L. Zhang, J. Li, R. Liu, Y. Zhou, Y. Zhang, L. Ji, L. Li, J. Mol. Liq. 362 (2022) 119667, https://doi.org/10.1016/j.molliq.2022.119667.  doi: 10.1016/j.molliq.2022.119667

    32. [32]

      L. Wang, J. Zhang, S. Meng, H. Wu, Y. Zhao, Z. Meng, L. Feng, H. Wang, Y. Cheng, L. Yang, et al., Desalination 599 (2025) 118445, https://doi.org/10.1016/j.desal.2024.118445.  doi: 10.1016/j.desal.2024.118445

    33. [33]

      X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454.  doi: 10.1016/j.cej.2022.138454

    34. [34]

      J. Xiong, Z. Zhao, D. Liu, L. He, Sep. Purif. Technol. 290 (2022) 120789, https://doi.org/10.1016/j.seppur.2022.120789.  doi: 10.1016/j.seppur.2022.120789

    35. [35]

      M. Rethinasabapathy, G. Bhaskaran, S. -K. Hwang, T. Ryu, Y. S. Huh, Chemosphere 336 (2023) 139256, https://doi.org/10.1016/j.chemosphere.2023.139256.  doi: 10.1016/j.chemosphere.2023.139256

    36. [36]

      Y. Bao, Z. Ji, H. Zhou, C. Zhang, S. Song, F. Jia, J. Li, M. Quintana, Small (2024) 2406951, https://doi.org/10.1002/smll.202406951. 

    37. [37]

      B. Hu, B. Zhang, Y. Wang, M. Li, J. Yang, J. Liu, Desalination 560 (2023) 116662, https://doi.org/10.1016/j.desal.2023.116662.  doi: 10.1016/j.desal.2023.116662

    38. [38]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.  doi: 10.1016/j.seppur.2024.127693

    39. [39]

      Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136.  doi: 10.1016/j.cej.2023.147136

    40. [40]

      J. Kumberg, M. Müller, R. Diehm, S. Spiegel, C. Wachsmann, W. Bauer, P. Scharfer, W. Schabel, Energy Technol. 7 (11) (2019) 1900722, https://doi.org/10.1002/ente.201900722.  doi: 10.1002/ente.201900722

    41. [41]

      A. M, A. Paul, ACS Omega 2 (11) (2017) 8039, https://doi.org/10.1021/acsomega.7b01275.  doi: 10.1021/acsomega.7b01275

    42. [42]

      K. Kwon, J. Kim, S. Han, J. Lee, H. Lee, J. Kwon, J. Lee, J. Seo, P. J. Kim, T. Song, et al., Small Sci. 4 (5) (2024) 2300302, https://doi.org/10.1002/smsc.202300302.  doi: 10.1002/smsc.202300302

    43. [43]

      C. Zhang, Nat. Energy 8 (6) (2023) 554, https://doi.org/10.1038/s41560-023-01290-z.  doi: 10.1038/s41560-023-01290-z

    44. [44]

      Y. Zhang, S. Lu, Z. Wang, V. Volkov, F. Lou, Z. Yu, Renew. Sust. Energ. Rev. 183 (2023) 113515, https://doi.org/10.1016/j.rser.2023.113515.  doi: 10.1016/j.rser.2023.113515

    45. [45]

      H. Kim, J. H. Lim, T. Lee, J. An, H. Kim, H. Song, H. Lee, J. W. Choi, J. H. Kang, ACS Energy Lett. 8 (8) (2023) 3460, https://doi.org/10.1021/acsenergylett.3c00936.  doi: 10.1021/acsenergylett.3c00936

    46. [46]

      Q. Li, S. Zhang, Y. Jiang, L. Zhu, N. Guo, J. Zhang, Y. Li, T. Wei, Z. Fan, Acta Phys. -Chim. Sin. 41 (3) (2025) 100028, https://doi.org/10.3866/PKU.WHXB202406009.  doi: 10.3866/PKU.WHXB202406009

    47. [47]

      J. Fu, X. Gong, W. Jin, C. Podder, Y. Liu, Z. Yang, M. Sultanov, H. Pan, Y. Wang, Energy Storage Mater. 69 (2024) 103423, https://doi.org/10.1016/j.ensm.2024.103423.  doi: 10.1016/j.ensm.2024.103423

    48. [48]

      M. Ryu, Y. -K. Hong, S. -Y. Lee, J. H. Park, Nat. Commun. 14 (1) (2023) 1316, https://doi.org/10.1038/s41467-023-37009-7.  doi: 10.1038/s41467-023-37009-7

    49. [49]

      B. Lee, N. Park, K. S. Kang, H. J. Ryu, S. H. Hong, ACS Sustain. Chem. Eng. 6 (2) (2018) 1572, https://doi.org/10.1021/acssuschemeng.7b01750.  doi: 10.1021/acssuschemeng.7b01750

    50. [50]

      B. Yang, R. Wang, B. Xin, L. Liu, Z. Niu, Acta Phys. -Chim. Sin. 41 (2) (2025) 100015, https://doi.org/10.3866/PKU.WHXB202310024.  doi: 10.3866/PKU.WHXB202310024

    51. [51]

      J. Liu, S. Tian, W. Knoll, Langmuir 21 (12) (2005) 5596, https://doi.org/10.1021/la0501233.  doi: 10.1021/la0501233

    52. [52]

      C. Nan, J. Lu, L. Li, L. Li, Q. Peng, Y. Li, Nano Res. 6 (7) (2013) 469, https://doi.org/10.1007/s12274-013-0324-8.  doi: 10.1007/s12274-013-0324-8

    53. [53]

      J. Wang, M. Wang, N. Ren, J. Dong, Y. Li, C. Chen, Energy Storage Mater. 39 (2021) 287, https://doi.org/10.1016/j.ensm.2021.04.030.  doi: 10.1016/j.ensm.2021.04.030

    54. [54]

      B. Liu, L. Zhou, Y. Wang, S. Zhuo, Y. Zhou, J. Yang, Z. Li, J. Appl. Phys. 134 (14) (2023) 144701, https://doi.org/10.1063/5.0161169.  doi: 10.1063/5.0161169

    55. [55]

      X. Qin, Y. Xia, J. Wu, C. Sun, J. Zeng, K. Xu, J. Cai, Energy Fuels 36 (14) (2022) 7519, https://doi.org/10.1021/acs.energyfuels.2c01359.  doi: 10.1021/acs.energyfuels.2c01359

    56. [56]

      E. Zhen, J. Jiang, C. Lv, X. Huang, H. Xu, H. Dou, X. Zhang, J. Power Sources 515 (2021) 230644, https://doi.org/10.1016/j.jpowsour.2021.230644.  doi: 10.1016/j.jpowsour.2021.230644

    57. [57]

      Z. Liang, T. Li, H. Chi, J. Ziegelbauer, K. Sun, M. Wang, W. Zhang, T. Liu, Y. -T. Cheng, Z. Chen, et al., Energy Environ. Mater. 7 (1) (2024) e12503, https://doi.org/10.1002/eem2.12503.  doi: 10.1002/eem2.12503

    58. [58]

      Y. Ma, H. Yang, J. Guo, C. Sathe, A. Agui, J. Nordgren, Appl. Phys. Lett. 72 (25) (1998) 3353, https://doi.org/10.1038/s41467-023-37009-7.  doi: 10.1038/s41467-023-37009-7

    59. [59]

      H. Wang, J. Fu, C. Wang, R. Zhang, Y. Yang, Y. Li, C. Li, Q. Sun, H. Li, T. Zhai, Adv. Funct. Mater. 31 (34) (2021) 2102284, https://doi.org/10.1002/adfm.202102284.  doi: 10.1002/adfm.202102284

    60. [60]

      Y. Suh, J. K. Koo, H. -j. Im, Y. -J. Kim, Chem. Eng. J. 476 (2023) 146299, https://doi.org/10.1016/j.cej.2023.146299.  doi: 10.1016/j.cej.2023.146299

    61. [61]

      M. Ebner, D. -W. Chung, R. E. García, V. Wood, Adv. Energy Mater. 4 (5) (2014) 1301278, https://doi.org/10.1002/aenm.201301278.  doi: 10.1002/aenm.201301278

    62. [62]

      Y. Liu, X. Gong, C. Podder, F. Wang, Z. Li, J. Liu, J. Fu, X. Ma, P. Vanaphuti, R. Wang, et al., Joule 7 (5) (2023) 952, https://doi.org/10.1016/j.joule.2023.04.006.  doi: 10.1016/j.joule.2023.04.006

    63. [63]

      D. Davudov, R. G. Moghanloo, Y. Zhang, Int. J. Coal Geol. 220 (2020) 103427, https://doi.org/10.1016/j.coal.2020.103427.  doi: 10.1016/j.coal.2020.103427

    64. [64]

      L. Chi, Z. Heidari, SPE J. 21 (4) (2016) 1436, https://doi.org/10.2118/179734-PA.  doi: 10.2118/179734-PA

    65. [65]

      X. Zhao, X. Song, M. Li, S. Yang, K. Wang, Y. Li, Y. Wang, Sep. Purif. Technol. 363 (2025) 132021, https://doi.org/10.1016/j.seppur.2025.132021.  doi: 10.1016/j.seppur.2025.132021

    66. [66]

      K. -Y. Park, J. -W. Park, W. M. Seong, K. Yoon, T. -H. Hwang, K. -H. Ko, J. -H. Han, Y. Jaedong, K. Kang, J. Power Sources 468 (2020) 228369, https://doi.org/10.1016/j.jpowsour.2020.228369.  doi: 10.1016/j.jpowsour.2020.228369

    67. [67]

      L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815.  doi: 10.1016/j.cej.2025.159815

    68. [68]

      J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828.  doi: 10.1016/j.desal.2024.117828

  • 加载中
    1. [1]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    2. [2]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    5. [5]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    6. [6]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Lei WangPanpan ZhangZhiyuan GuoJing WangJie MaZhi-yong Ji . Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches. Acta Physico-Chimica Sinica, 2026, 42(1): 100127-0. doi: 10.1016/j.actphy.2025.100127

    8. [8]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    9. [9]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    10. [10]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    18. [18]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    19. [19]

      Xiao Ma Junjie Wang Xin Chen Jingcheng Li Lihong Zhao Xueping Sun Shaojuan Cheng Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(1)
  • Abstract views(6)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return