Citation: Shan Zhao,  Xu Liu,  Haotian Guo,  Zonglin Liu,  Pengfei Wang,  Jie Shu,  Tingfeng Yi. Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100129. doi: 10.1016/j.actphy.2025.100129 shu

Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries

  • Corresponding author: Zonglin Liu,  Tingfeng Yi, 
  • Received Date: 27 May 2025
    Revised Date: 29 June 2025

  • P2-type layered transition metal oxides (P2-NaxTMO2) have emerged as promising cathodes for sodium-ion batteries (SIBs) owing to their superior cycling stability and excellent rate capability. However, their practical application is significantly hindered by two major challenges. Firstly, irreversible phase transitions occur during high-voltage operation, which disrupt the structural integrity and deteriorate electrochemical performance. Secondly, their inherently low theoretical specific capacity fails to meet modern energy demands. To tackle these challenges, this study proposes a novel synergistic strategy that integrates high-entropy engineering with a biphasic P2/O3 structural design. An innovative cathode material, Na0.70Ni0.25Mn0.35Co0.15Fe0.05Ti0.20O2 (denoted as Na0.70NMCFT), was successfully synthesized via a high-temperature solid-state reaction. This material design critically incorporates five distinct transition metal cations into the transition metal (TM) layer, constructing a stabilized high-entropy configuration. Careful optimization of both the five TM elements and the sodium content was essential to precisely regulate the synthesis and formation of the desired integrated P2/O3 biphasic structure within this high-entropy host. Comprehensive structural characterization unequivocally confirms the successful construction of this tailored architecture. X-ray diffraction (XRD) and transmission electron microscopy (TEM) collectively confirm the successful construction of the P2/O3 biphasic architecture. The high-entropy engineering stabilizes the P2 phase through configurational entropy, effectively suppressing irreversible phase transitions and Na+/vacancy ordering during cycling, as evidenced by smoother charge/discharge profiles and ex-situ XRD analysis under high potentials. Meanwhile, the introduced O3 phase compensates for capacity shortages and improves cycling stability, working in tandem with the P2 phase. Critically, the interaction between the two phases enables a highly reversible transition between P2/O3-P2/P3, further enhancing the overall performance. Under the combined action of the high-entropy and biphasic strategies, Na0.70NMCFT exhibits optimal electrochemical performance. It delivers an initial discharge capacity of 102.08 mAh g−1 at 1C, retaining 88.15% after 200 cycles, demonstrating exceptional cycling stability. Moreover, even at 10C, Na0.70NMCFT still has an initial discharge specific capacity of 85.67 mAh g−1 and a capacity retention of up to 70% after 1,000 cycles. Kinetic analyses further reveal that Na0.70NMCFT possesses the lowest charge transfer resistance and the highest sodium-ion diffusion coefficient among the materials studied. In conclusion, this work demonstrates that the rational design of biphasic high-entropy cathodes can synergistically achieve superior rate capability, cycling stability, and maintain high theoretical capacity. It not only overcomes the key bottlenecks of P2-type oxides but also paves the way for the development of advanced SIB cathodes, establishing a new paradigm for the engineering of high-performance cathode materials in the field of sodium-ion batteries.
  • 加载中
    1. [1]

      K. Tian, Y. Dang, Z. Xu, R. Zheng, Z. Wang, D. Wang, Y. Liu, Q. Wang, Energy Storage Mater. 73(2024) 103841, https://doi.org/10.1016/j.ensm.2024.103841.

    2. [2]

      F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang, S. Wang, W. Li, Y. Yang, H. Tian, Chem. Rev. 124(2024) 4778, https://doi.org/10.1021/acs.chemrev.3c00728.

    3. [3]

      J. Mei, B. Li, S. Zhang, D. Xiao, P. Hu, G. Zhang, Acta Phys. Chim. Sin. 40(2024) 2407023, https://doi.org/10.3866/PKU.WHXB202407023.

    4. [4]

      X. Gui, Z. Xiang, T. Ren, W. Liu, Z. Pei, G. Long, Z. Fu, K. Wan, Z. Liang, Adv. Mater. 37(2025) 2417008, https://doi.org/10.1002/adma.202417008.

    5. [5]

      C. Huang, H. Zheng, N. Qin, C. Wang, L. Wang, J. Lu, Acta Phys. Chim. Sin. 40(2024) 2308051, https://doi.org/10.3866/PKU.WHXB202308051.

    6. [6]

      R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 6(2021) 1020, https://doi.org/10.1038/s41578-021-00324-w.

    7. [7]

      J.W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2(2012) 141, https://doi.org/10.1002/aenm.201100494.

    8. [8]

      A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y.H. Lu, Adv. Energy Mater. 8(2018) 1702869, https://doi.org/10.1002/aenm.201702869.

    9. [9]

      J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng, Q. Shen, Y. Hou, H. Qi, X. Xing, L. Jiao, J. Chen, Angew. Chem. Int. Ed. 62(2023) e202219230, https://doi.org/10.1002/anie.202219230.

    10. [10]

      C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 370(2020) 708, https://doi.org/10.1126/science.aay9972.

    11. [11]

      Y. Wang, Z. Cao, Z. Du, X. Cao, S. Liang, Acta Phys. Chim. Sin. 41(2025) 100035, https://doi.org/10.3866/PKU.WHXB202406014.

    12. [12]

      Y.P. Deng, Z.G. Wu, R. Liang, Y. Jiang, D. Luo, A. Yu, Z. Chen, Adv. Funct. Mater. 29(2019), 1808522, https://doi.org/10.1002/adfm.201808522.

    13. [13]

      H.R. Yao, L. Zheng, S. Xin, Y.G. Guo, Sci. China Chem. 65(2022) 1076, https://doi.org/10.1007/s11426-022-1257-8.

    14. [14]

      N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114(2014) 11636, https://doi.org/10.1021/cr500192f.

    15. [15]

      C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 99(1980) 81, https://doi.org/10.1016/0378-4363(80)90214-4.

    16. [16]

      Y. Wen, C. Lin, H. Shen, K. Fang, F. Li, C. Luo, X. Wang, H. Peng, Y. Qiao, S. Zhuang, M. Lu, Chem. Eng. J. 506(2025) 160126, https://doi.org/10.1016/j.cej.2025.160126.

    17. [17]

      L. Yu, H. Dong, Y.-X. Chang, Z. Cheng, K. Xu, Y.-H. Feng, D. Si, X. Zhu, M. Liu, B. Xiao, P.-F. Wang, S. Xu, Sci. China Chem. 65(2022) 2005, https://doi.org/10.1007/s11426-022-1364-1.

    18. [18]

      G. Wan, B. Peng, L. Zhao, F. Wang, L. Yu, R. Liu, G. Zhang, SusMat 3(2023) 58, https://doi.org/10.1002/sus2.105.

    19. [19]

      L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma, S. Tan, K.A. Beyer, F. Xu, E. Hu, H.L. Xin, Adv. Energy Mater. 12(2022) 2201989, https://doi.org/10.1002/aenm.202201989.

    20. [20]

      Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science 376(2022) eabn3103, https://doi.org/10.1126/science.abn3103.

    21. [21]

      H. Liu, Y. Wang, X. Ding, Y. Wang, F. Wu, H. Gao, Sustainable Energy Fuels 8(2024) 1304, https://doi.org/10.1039/D3SE01597A.

    22. [22]

      Y. Jiang, W. Li, K. Luo, ACS Sustainable Chem. Eng. 12(2024) 8051, https://doi.org/10.1021/acssuschemeng.4c00185.

    23. [23]

      Y. Dong, Z. Zhou, Y. Ma, H. Zhang, F. Meng, Y. Wu, Y. Ma, ACS Energy Lett. 9(2024) 5096, https://doi.org/10.1021/acsenergylett.4c02223.

    24. [24]

      W. Zhang, K. Wang, H. Ning, Z. Qu, H. Luo, Q. Wei, P. Qing, X. Huang, X. Wang, G. Li, C. Huang, Z. Lan, W. Zhou, J. Guo, D. Huang, H. Liu, J. Power Sources 635(2025) 236516, https://doi.org/10.1016/j.jpowsour.2025.236516.

    25. [25]

      P. Zhang, G. Zhang, Y. Liu, Y. Fan, X. Shi, Y. Dai, S. Gong, J. Hou, J. Ma, Y. Huang, R. Zhang, J. Colloid Interface Sci. 654(2024) 1405, https://doi.org/10.1016/j.jcis.2023.10.129.

    26. [26]

      D. Zhou, W. Huang, X. Lv, F. Zhao, J. Power Sources 421(2019) 147, https://doi.org/10.1016/j.jpowsour.2019.02.061.

    27. [27]

      Y. Wang, M. Yan, K. Xu, Y.-X. Chang, J. Guo, Q. Wang, B. Wang, D. Wang, Y.-X. Yin, S. Xu, Inorg. Chem. Front. 9(2022) 5231, https://doi.org/10.1039/D2QI01018F.

    28. [28]

      D. Hao, G. Zhang, D. Ning, D. Zhou, Y. Chai, J. Xu, X. Yin, R. Du, G. Schuck, J. Wang, Y. Li, Nano Energy 125(2024) 109562, https://doi.org/10.1016/j.nanoen.2024.109562.

    29. [29]

      L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng, D. Si, M. Liu, P.-F. Wang, S. Xu, Energy Storage Mater. 50(2022) 730, https://doi.org/10.1016/j.ensm.2022.06.012.

    30. [30]

      E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M.D. Slater, C.S. Johnson, Adv. Energy Mater. 4(2014) 1400458, https://doi.org/10.1002/aenm.201400458.

    31. [31]

      C. Lin, P. Dai, X. Wang, J. Sun, S. Zhuang, L. Wu, M. Lu, Y. Wen, Chem. Eng. J. 480(2024) 147964, https://doi.org/10.1016/j.cej.2023.147964.

    32. [32]

      Z. Cheng, X.-Y. Fan, L. Yu, W. Hua, Y.-J. Guo, Y.-H. Feng, F.-D. Ji, M. Liu, Y.-X. Yin, X. Han, Y.-G. Guo, P.-F. Wang, Angew. Chem. Int. Ed. 61(2022) e202117728, https://doi.org/10.1002/anie.202117728.

    33. [33]

      X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat 4(2022) e12261, https://doi.org/10.1002/eom2.12261.

    34. [34]

      J.W. Sturman, E.A. Baranova, Y. Abu-Lebdeh, Front. Energy Res. 10(2022) 862551, https://doi.org/10.3389/fenrg.2022.862551.

    35. [35]

      W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772(2019) 465, https://doi.org/10.1016/j.jallcom.2018.09.185.

    36. [36]

      Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 60(2021) 20960, https://doi.org/10.1002/anie.202108109.

    37. [37]

      T. Jin, P.-F. Wang, Q.-C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X.-Q. Yang, L. Jiao, C. Wang, Angew. Chem. Int. Ed. 59(2020) 14511, https://doi.org/10.1002/anie.202003972.

    38. [38]

      P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu, J. Weng, J. Zhao, H. Cao, J. Zhou, F. Cheng, Energy Storage Mater. 57(2023) 618, https://doi.org/10.1016/j.ensm.2023.03.007.

    39. [39]

      S. Jamil, F. Mudasar, T. Yuan, M. Fasehullah, G. Ali, K.H. Chae, O. Voznyy, Y. Zhan, M. Xu, ACS Appl. Mater. Interfaces 16(2024) 14669, https://doi.org/10.1021/acsami.3c15667.

    40. [40]

      T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50(2018) 462, https://doi.org/10.1016/j.nanoen.2018.05.056.

    41. [41]

      M. Han, Z. Zou, J. Liu, C. Deng, Y. Chu, Y. Mu, K. Zheng, F. Yu, L. Wei, L. Zeng, T. Zhao, Small 20(2024) 2312119, https://doi.org/10.1002/smll.202312119.

    42. [42]

      Z. Li, M. Han, J. Wang, L. Zhang, P. Yu, Q. Li, X. Bai, J. Yu, Adv. Funct. Mater. 34(2024) 2404263, https://doi.org/10.1002/adfm.202404263.

    43. [43]

      Q. Shen, X. Zhao, Y. Liu, Y. Li, J. Zhang, N. Zhang, C. Yang, J. Chen, Adv. Sci. 7(2020) 2002199, https://doi.org/10.1002/advs.202002199.

    44. [44]

      Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F.-M. Jin, H. Fang, Y.-B. He, F. Kang, S. Wu, Q.-H. Yang, Adv. Mater. 36(2024) 2308493, https://doi.org/10.1002/adma.202308493.

    45. [45]

      N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11(2012) 512, https://doi.org/10.1038/nmat3309.

    46. [46]

      Z. Xu, H. Yang, X. Zhao, R. Zheng, Z. Song, Z. Wang, H. Sun, Y. Liu, D. Wang, ACS Appl. Mater. Interfaces 17(2025) 1085, https://doi.org/10.1021/acsami.4c16665.

    47. [47]

      X. Liang, Y.-K. Sun, Adv. Funct. Mater. 32(2022) 2206154, https://doi.org/10.1002/adfm.202206154.

    48. [48]

      R. Li, X. Qin, X. Li, J. Zhu, L.-R. Zheng, Z. Li, W. Zhou, Adv. Energy Mater. 14(2024) 2400127, https://doi.org/10.1002/aenm.202400127.

    49. [49]

      Z.J. Li, Y.W. Zhang, X. Wu, X.Q. Wu, R. Maudgal, H.W. Zhang, G. Han, Adv. Sci. 2(2015) 1500001, https://doi.org/10.1002/advs.201500001.

    50. [50]

      S.M. Oh, P. Oh, S.O. Kim, A. Manthiram, J. Electrochem. Soc. 164(2017) A321, https://doi.org/10.1149/2.0931702jes.

    51. [51]

      Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater. 30(2020) 1907837, https://doi.org/10.1002/adfm.201907837.

    52. [52]

      Z. Hu, Y. Niu, X. Rong, Y. Hu, Acta Phys. Chim. Sin. 40(2024) 2306005, https://doi.org/10.3866/PKU.WHXB202306005.

    53. [53]

      Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang, D. Goonetilleke, A. Omar, D. Mikhailova, H. Hahn, B. Breitung, T. Brezesinski, Adv. Mater. 33(2021) 2101342, https://doi.org/10.1002/adma.202101342.

    54. [54]

      Q. Jiang, X. Li, Y. Hao, J. Zuo, R. Duan, J. Li, G. Cao, J. Wang, J. Wang, M. Li, X. Yang, M. Li, W. Li, Y. Xi, J. Zhang, W. Xiao, Adv. Funct. Mater. 35(2025) 2400670, https://doi.org/10.1002/adfm.202400670.

  • 加载中
    1. [1]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    12. [12]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    13. [13]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return